Answer:
17.934 kg of water
Explanation:
If balanced equation is not given; this format can come in handy.
For any alkane of the type : CₙH₂ₙ₊₂ , it's combustion reaction will follow:
2CₙH₂ₙ₊₂ + (3n+1) O₂ → (2n)CO₂ + 2(n+1) H₂O
For butane:
2C₄H₁₀(g) + 13O₂(g) → 8CO₂(g) + 10H₂O(l)
2 moles of butane gives 10 moles of water.
1 mol of any substance has Avogadro number(N) of molecules in it( 6.022 x 10²³)
Mass of 1 mole of any substance is equal to it's molar mass
So, if 2 x N molecules of butane gives 10 x 18 g of water.
Then 1.2 x 10²⁶ molecules will give:

= 17.934 x 10³ g of water
= 17.934 kg of water
Answer:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land.
Explanation:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land. Whereas, land breeze blows from the areas of higher pressure on land to the areas of lower pressure on water.
The energy transformations are similar because they result into radiant energy.
As for the lamp, Electrical energy is transformed into light when the filament
or mercury vapor glows on passage of current.
The fire- chemical energy is turned to light energy during the combustion of carbon. Both products comprise of ultraviolet radiation which is a form of radiant energy.
The arrangement of molecules within the 3 phases of matter are shown in the picture.
For the solid, the molecules are packed closely together. They don't have much space to move, so they just practically vibrate. For the liquid, the molecules are relatively farther from each other. The liquid molecules can flow freely but not as much as the gases. In the gases, the molecules are very far from each other. They are very sensitive to slight changes of pressure, volume and temperature.