Answer:
ΔH° = -186.2 kJ
Explanation:
Hello,
This case in which the Hess method is applied to compute the required chemical reaction. Thus, we should arrange the given first two reactions as:
(1) it is changed as:
SnCl2(s) --> Sn(s) + Cl2(g)...... ΔH° = 325.1 kJ
That is why the enthalpy of reaction sign is inverted.
(2) remains the same:
Sn(s) + 2Cl2(g) --> SnCl4(l)......ΔH° = -511.3 kJ
Therefore, by adding them, we obtain the requested chemical reaction:
(3) SnCl2(s) + Cl2(g) --> SnCl4(l)
For which the enthalpy change is:
ΔH° = 325.1 kJ - 511.3 kJ
ΔH° = -186.2 kJ
Best regards.
Atomic mass Boron ( B ) = 10.811 u.m.a
10.811 g -------------- 6.02x10²³ atoms
5.40 g ----------------- ?? atoms
5.40 x ( 6.02x10²³) / 10.811 =
3.0069x10²³ atoms
It plays a key role in shaping ecosystems by serving as an agent of renewal and change. But fire can be deadly, destroying homes, wildlife habitat and timber, and polluting the air with emissions harmful to human health. Fire also releases carbon dioxide a key greenhouse gas into the atmosphere
I believe the correct answer would be "It has no energy because it is just sitting there."
I hope this helps! :D