1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STatiana [176]
3 years ago
8

What two categorical ways of thinking about matter are discussed in the passage?

Chemistry
1 answer:
Mamont248 [21]3 years ago
4 0

Answer:

There's no passage but I can say that matter are that ''thing'' which extend through all Universe, matter is everything. It can be seen or felt as liquid, gas or solid. This changes of its state depend on the amount of energy that is involved.

So, here is used categorical thinking because is a abstract concept that is hard to understand sometimes. It's abstract when we say that matter is all, not  just what we see, but even what we don't see like ''Dark Matter'', which is the majority in the Universe.

You might be interested in
Identify the element: 6 energy level, metallic, 82 election
Lady bird [3.3K]

<u>Answer</u>:-

Name of element = Lead

Symbol ♾ of Lead = Pb

Atomic no. = 82

Atomic mass = 207.2 amu

No. of protons = 82

No. of electrons = 82

Yes, lead(Pb) is a metallic element and certainly it has 6 electron shells which means 6 energy level.

If you find anything unclear you can ask me...

6 0
3 years ago
Naphthalene, C10H8, melts at 80.2°C. If the vapour pressure of the liquid is 1.3 kPa at 85.8°C and 5.3 kPa at 119.3°C, use th
sweet-ann [11.9K]

(a) One form of the Clausius-Clapeyron equation is

ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂); where in this case:

  • P₁ = 1.3 kPa
  • P₂ = 5.3 kPa
  • T₁ = 85.8°C = 358.96 K
  • T₂ = 119.3°C = 392.46 K

Solving for ΔHv:

  • ΔHv = R * ln(P₂/P₁) / (1/T₁ - 1/T₂)
  • ΔHv = 8.31 J/molK * ln(5.3/1.3) / (1/358.96 - 1/392.46)
  • ΔHv = 49111.12 J/molK

(b) <em>Normal boiling point means</em> that P = 1 atm = 101.325 kPa. We use the same formula, using the same values for P₁ and T₁, and replacing P₂ with atmosferic pressure, <u>solving for T₂</u>:

  • ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂)
  • 1/T₂ = 1/T₁ - [ ln(P₂/P₁) / (ΔHv/R) ]
  • 1/T₂ = 1/358.96 K - [ ln(101.325/1.3) / (49111.12/8.31) ]
  • 1/T₂ = 2.049 * 10⁻³ K⁻¹
  • T₂ = 488.1 K = 214.94 °C

(c)<em> The enthalpy of vaporization</em> was calculated in part (a), and it does not vary depending on temperature, meaning <u>that at the boiling point the enthalpy of vaporization ΔHv is still 49111.12 J/molK</u>.

3 0
3 years ago
Which of the following is true?
kotykmax [81]
Anwser is C for cesium
6 0
3 years ago
Read 2 more answers
What us energy stored in an object called​
Vikentia [17]

Answer:

potential energy

Explanation:

4 0
3 years ago
Read 2 more answers
A 50.0 mL solution of 0.129 M KOH is titrated with 0.258 M HCl. Calculate the pH of the solution after the addition of each of t
kobusy [5.1K]

Answer:

A- pH = 13.12

B- pH = 12.91

C- pH = 12.71

D- pH = 12.43

E- pH = 11.55

F- pH = 7

G- pH = 2.46

H- pH = 1.88

Explanation:

This is a titration of a strong base with a strong acid. The neutralization reaction is: KOH (aq) + HCl (aq) →  H₂O(l) + KCl(aq)

Our pH at the equivalence point is 7, because we have made a neutral salt.

To determine the volume at that point we state the formula for titration:

mmoles of base = mmoles of acid

Volume of base  . M of base = Volume of acid . M of acid

50mL . 0.129M = 0.258 M . Volume of acid

Volume of acid = (50mL . 0.129M) / 0.258 M →  25 mL (Point <u>F</u>)

When we add 25 mL of HCl, our pH will be 7.

A- At 0 mL of acid, we only have base.

KOH → K⁺ + OH⁻

[OH⁻] = 0.129 M

To make more easy the operations we will use, mmol.

mol . 1000 = mmoles → mmoles / mL = M

- log 0.129 = 0.889

14 - 0.889 = 13.12

B-  In this case we are adding, (7 mL . 0.258M) = 1.81 mmoles of H⁺

Initially we have  0.129 M . 50 mL = 6.45 mmoles of OH⁻

1.81 mmoles of H⁺ will neutralize, the 6.45 mmoles of OH⁻ so:

6.45 mmol - 1.81 = 4.64 mmoles of OH⁻

This mmoles of OH⁻ are not at 50 mL anymore, because our volume has changed. (Now, we have 50 mL of base + 7 mL of acid) = 57 mL of total volume.

[OH⁻] = 4.64 mmoles / 57 mL = 0.0815 M

- log 0.0815 M = 1.09 → pOH

pH = 14 - pOH → 14 - 1.09 = 12.91

C- In this case we add (12.5 mL . 0.258M) = 3.22 mmoles of H⁺

<em>Our initial mmoles of OH⁻ would not change through all the titration. </em>

Then 6.45 mmoles of OH⁻ are neutralized by 3.22 mmoles of H⁺.

6.45 mmoles of OH⁻ - 3.22 mmoles of H⁺ = 3.23 mmoles of OH⁻

Total volume is: 50 mL of base + 12.5 mL = 62.5 mL

[OH⁻] = 3.23 mmol / 62.5 mL = 0.0517 M

- log  0.0517 = 1.29 → pOH

14 - 1.11 = 12.71

D- We add (18 mL . 0.258M) = 4.64 mmoles of H⁺

6.45 mmoles of OH⁻ are neutralized by 4.64 mmoles of H⁺.

6.45 mmoles of OH⁻ - 4.64 mmoles of H⁺ = 1.81 mmoles of OH⁻

Total volume is: 50 mL of base + 18 mL = 68 mL

[OH⁻] = 1.81 mmol / 68 mL = 0.0265 M

- log  0.0265 = 1.57 → pOH

14 - 1.57 = 12.43

E- We add (24 mL . 0.258M) = 6.19 mmoles of H⁺

6.45 mmoles of OH⁻ are neutralized by 6.19 mmoles of H⁺.

6.45 mmoles of OH⁻ - 6.19 mmoles of H⁺ = 0.26 mmoles of OH⁻

Total volume is: 50 mL of base + 24 mL = 74 mL

[OH⁻] = 0.26 mmol / 74 mL = 3.51×10⁻³ M

- log  3.51×10⁻³  = 2.45 → pOH

14 - 2.45 = 11.55

F- This the equivalence point.

mmoles of OH⁻ = mmoles of H⁺

We add (25 mL . 0.258M) = 6.45 mmoles of H⁺

All the OH⁻ are neutralized.

OH⁻  +  H⁺  ⇄   H₂O              Kw

[OH⁻] = √1×10⁻¹⁴   →  1×10⁻⁷  →  pOH = 7

pH → 14 - 7 = 7

G- In this case we have an excess of H⁻

We add (26 mL . 0.258M ) = 6.71 mmoles of H⁺

We neutralized all the OH⁻ but some H⁺ remain after the equilibrium

6.71 mmoles of H⁺ - 6.45 mmoles of OH⁻ = 0.26 mmoles of H⁺

[H⁺] = 0.26 mmol / Total volume

Total volume is: 50 mL + 26 mL → 76 mL

[H⁺] = 0.26 mmol / 76 mL → 3.42×10⁻³ M

- log 3.42×10⁻³ = 2.46 → pH

H- Now we add (29 mL . 0.258M) = 7.48 mmoles of H⁺

We neutralized all the OH⁻ but some H⁺ remain after the equilibrium

7.48 mmoles of H⁺ - 6.45 mmoles of OH⁻ = 1.03 mmoles of protons

Total volume is 50 mL + 29 mL = 79 mL

[H⁺] = 1.03 mmol / 79 mL → 0.0130 M

- log 0.0130 = 1.88 → pH

After equivalence point, pH will be totally acid, because we always have an excess of protons. Before the equivalence point, pH is basic, because we still have OH⁻ and these hydroxides, will be neutralized through the titration, as we add acid.

5 0
3 years ago
Other questions:
  • A sample of helium (He) effuses 2.0 times faster than another gas. What is the molar mass of the other gas?
    7·1 answer
  • How many moles are there in 987 grams of Ra(OH)2? id also love to know the simplest equation for converting moles --&gt; so i co
    8·1 answer
  • 4.5 × 1025 atoms of nickel equal how many moles? A. 27 mol B. 2.7 × 1048 mol C. 0.75 mol D. 75 mol
    11·2 answers
  • Which statement correctly contrasts science and pseudoscience
    10·1 answer
  • At 8:00, the temperature was 6 degrees Celsius (°C). Three hours later, the temperature was -13°C.
    13·2 answers
  • Which of the following is represented by the number of significant figures in a quantity? A) estimation B) precision C) accuracy
    11·1 answer
  • Check all the examples below that represent a physical property of matter​
    12·2 answers
  • The greater the mass of an object
    5·1 answer
  • 13.0 g of ammonium chloride in 500 g of water. What is the new BP? (NH,CI=53.491g/mol)
    8·1 answer
  • Which image represents the step in mitosis when chromosomes condense and spindle fibers form?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!