Answer:
6.8 mole of O₂
Explanation:
Given expression:
2H₂ + O₂ → 2H₂O
Number of moles of H₂ = 13.6moles
Unknown:
Number of moles of O₂ = ?
Solution:
In the given problem, we are to find the number of moles of oxygen gas that will use up 13.6mole of hydrogen gas;
From the reaction equation;
2 mole of H₂ will completely react with 1 mole of O₂
13.6 moles of H₂ will completely be used up by
mole of O₂
= 6.8 mole of O₂
Answer:
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Explanation:
2 NO (g) + O₂ (g) ⇄ 2NO₂ (g)
Let's apply the thermodynamic formula to calculate the ΔG
ΔG = ΔG° + R .T . lnQ
We don't know if the gases are at equilibrium, that's why we apply Q (reaction quotient)
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln Q
How can we know Q? By the partial pressures (Qp)
P NO = 0.450atm
PO₂ = 0.1 atm
PNO₂ = 0.650 atm
Qp = [NO₂]² / [NO]² . [O₂]
Qp = 0.650² / 0.450² . 0.1 = 20.86
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln 20.86
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Answer: Using a fan on a hot summer day. Explanation: the sweat that our body produces is for effective heat transfer. ...
Radiators in fridges, acs and automobiles. ...
Instant water heating geysers or any other geysers.
Explanation:
Answer:
no, Charon is significantly smaller than Mercury
Answer:
C₂H₄O₂ and NaC₂H₃O₂ are reactants.
Explanation:
Word equation:
Acetic acid + sodium acetate → sodium diacetate
Chemical equation:
C₂H₄O₂ + NaC₂H₃O₂ → C₄H₇NaO₄
This is a synthesis reaction in which simple reactants combine to form complex product.
This is also balanced chemical equation because there are equal number of atoms of all elements on both side of equation. Thus it follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.