<h2><u>Part A:</u></h2>
Let's denote no of seats in first row with r1 , second row with r2.....and so on.
r1=5
Since next row will have 10 additional row each time when we move to next row,
So,
r2=5+10=15
r3=15+10=25
<u>Using the terms r1,r2 and r3 , we can find explicit formula</u>
r1=5=5+0=5+0×10=5+(1-1)×10
r2=15=5+10=5+(2-1)×10
r3=25=5+20=5+(3-1)×10
<u>So for nth row,</u>
rn=5+(n-1)×10
Since 5=r1 and 10=common difference (d)
rn=r1+(n-1)d
Since 'a' is a convention term for 1st term,
<h3>
<u>⇒</u><u>rn=a+(n-1)d</u></h3>
which is an explicit formula to find no of seats in any given row.
<h2><u>Part B:</u></h2>
Using above explicit formula, we can calculate no of seats in 7th row,
r7=5+(7-1)×10
r7=5+(7-1)×10 =5+6×10
r7=5+(7-1)×10 =5+6×10 =65
which is the no of seats in 7th row.
Answer:
The volume of the cylinder is 163.3 m³.
Step-by-step explanation:
Given that,
Height = 13 cm
Base = 4 cm
So, radius = 2 cm
We need to calculate the volume of the cylinder
Using formula of cylinder

Where, r = radius
h = height
Put the value into the formula


Hence, The volume of the cylinder is 163.3 cm³.
Answer: Approximately 25187 animals of this species will be left in 2025
Step-by-step explanation:
We would apply the formula for exponential decay which is expressed as
y = b(1 - r)^x
Where
y represents the population of animals after x years.
x represents the number of years.
b represents the initial population of animals.
r represents rate of decay.
From the information given,
b = 200000
r = 4.5% = 4.5/100 = 0.045
x = 2025 - 1980 = 45 years
Therefore,
y = 200000(1 - 0.045)^45
y = 200000(0.955)^45
y = 25187
For transaction 3 it should be -155.15 and for transaction 4 it would be -223.75
Answer:
18
Step-by-step explanation:
The LCD of 6 and 9 is 18.
6: 6, 12, 18
9: 9, 18