Answer:
<h2>E) 52.5 cm</h2>
Explanation:
Step one:
given data
period T= 3 milliseconds= 0.003
velocity v= 175m/s
wave lenght λ=?
Step two:
we know that f=1/T
the expression relating period and wave lenght is
v=λ/T
λ=v*T
λ=175*0.002
λ=0.525m
to cm= 0.525*100
=52.5cm
The wavelength of the wave is E) 52.5 cm
Answer:
The final pressure of the gas is 9.94 atm.
Explanation:
Given that,
Weight of argon = 0.16 mol
Initial volume = 70 cm³
Angle = 30°C
Final volume = 400 cm³
We need to calculate the initial pressure of gas
Using equation of ideal gas


Where, P = pressure
R = gas constant
T = temperature
Put the value in the equation



We need to calculate the final temperature
Using relation pressure and volume



Hence, The final pressure of the gas is 9.94 atm.
7.17m/s glad I could help
Answer:
T1 = 130N, T2 = 370N
Explanation:
In order for the system to be at rest, the sum of all forces must be zero and the torque around a point on the beam must be zero.
1. forces:
Let tension in rope 1 be T1 and in rope 2 be T2:
ma = T1 + T2 - 100N - 400N = 0
(1) T1 + T2 = 500N
2. torque around the center point of the beam:
τ = r x F = 5*T1 + 3*400N - 5*T2 = 0
(2) T1 - T2 = -240N
Solving both equations:
T1 = 130N
T2 = 370N