Molarity can be defined as the number of moles of solute in 1 L of solution.
M = n/V
Where M is the molarity of the solution (M or mol/L), n is the moles of the solute (mol) and V is the volume of the solution (L).
Here, solute is KF.
n = <span>0.250 mol
</span>V = 0.500 L
M = ?
By applying the formula,
M = 0.250 mol / 0.500 L
M = 0.500 mol/L
Hence, the molarity of KF solution is 0.500 mol/L.
Fewer option for consumers
If you were to take water (like many other materials) and break it up into almost the smallest things you could, you’d get molecules. If the molecules are stuck together really tightly in a regular pattern, then they’re called a solid. The solid form of water is ice. This actually makes a lot of sense, because it certainly does seem like all the little parts of a solid (like ice) are stuck together very tightly.
When you heat something up, it makes the molecules move faster. If you heat up a typical solid, it melts and becomes a liquid. In a liquid (like water), the molecules are still stuck together, but they can move around some. What actually happens is that the molecules are still sort of sticking together, but they’re constantly breaking apart and sticking to different molecules. This also makes sense when you think about water. Water sort of sticks together, but it breaks apart /really/ easily.
If you heat a liquid like water up even more (like if you put it in a pot on the stove), then the molecules will move around so fast that they can’t even hold on to each other at all. When this happens, all of the molecules go flying apart and become a gas (like when you boil water to make steam). The process of gas molecules leaving the liquid to go into the gas is called "evaporation." The opposite process is called "condensation."
<span>Hope this answers your question!</span>
Answer:
A) CH3CH2CH2CH2CH2CH2OH
Explanation:
For this question, we have the following answer options:
A) CH3CH2CH2CH2CH2CH2OH
B) (CH3CH2)2CH(OH)CH2CH3
C) (CH3CH2)2CHOHCH3
D) (CH3CH2)3COH
E) (CH3CH2)2C(CH3)OH
We have to remember the<u> reaction mechanism</u> of the substitution reaction with
. <em>The idea is to generate a better leaving group in order to add a "Br" atom.</em>
The
attacks the "OH" generation new a bond to P (O-P bonds are very strong), due to this new bond we will have a better leaving group that can remove the oxygen an allow the attack of the Br atom to generating a new C-Br bond. This is made by an <u>Sn2 reaction</u>. Therefore we will have a faster reaction with <u>primary substrates</u>. In this case, the only primary substrate is molecule A. So, <em>"CH3CH2CH2CH2CH2CH2OH"</em> will react faster.
See figure 1
I hope it helps!