Answer: X=17
Step-by-step explanation: (sorry if im wrong) so basicly X would be 17 because 6+2=8 so X has to +2 to get to 19 making X=17
Answer:
246 ft is the maximum height
Step-by-step explanation:
The height h given above is a quadratic function. The graph of h as a function of time t gives a parabolic shape and the maximum height h occur at the vertex of the parabola. For a quadratic function of the form h = a t² + bt + c, the vertex is located at t = - b / 2a. Hence for h given above the vertex in the question s(t) = 124 + 64t − 16t², is at t
t = -64/2(-16) = 64/32 = 2 seconds
Thus, 2 seconds after the object was thrown, it reaches its highest point (maximum value of h) which is given by
h = -16(2)² + 64 (2) + 124 = 246eet
Answer:
(A) y+4=-3(x+6)
Step-by-step explanation:
The point-slope form of the equation of a line whose slope is m and passes through the point
is: 
Given the point: 
Slope, m=-3

Substituting these values into:
, we obtain the point slope form of the equation:

The correct option is A.
Answer:

Step-by-step explanation:
the slope is :

at a pt on graph , when

therefore, coordinates are (1,3)
The equation is :

Answer: You need to wait at least 6.4 hours to eat the ribs.
t ≥ 6.4 hours.
Step-by-step explanation:
The initial temperature is 40°F, and it increases by 25% each hour.
This means that during hour 0 the temperature is 40° F
after the first hour, at h = 1h we have an increase of 25%, this means that the new temperature is:
T = 40° F + 0.25*40° F = 1.25*40° F
after another hour we have another increase of 25%, the temperature now is:
T = (1.25*40° F) + 0.25*(1.25*40° F) = (40° F)*(1.25)^2
Now, we can model the temperature at the hour h as:
T(h) = (40°f)*1.25^h
now we want to find the number of hours needed to get the temperature equal to 165°F. which is the minimum temperature that the ribs need to reach in order to be safe to eaten.
So we have:
(40°f)*1.25^h = 165° F
1.25^h = 165/40 = 4.125
h = ln(4.125)/ln(1.25) = 6.4 hours.
then the inequality is:
t ≥ 6.4 hours.