
above is the distance formula, plugging your numbers from P(x1,y1) and Q(x2,y2).

or
<span>In
4 weeks, it dropped 3 feet in total.
The unit rate of this is 3 feet / 4 weeks
If we simplify this into days, this will be the solutions
=> 4 weeks has (4 * 7) 28 days in total, so we need to divide 3 feet by 28
days to get the simplified unit rate.
=> 3 feet / 28 days
=> .107 feet / day.
So the water drops .107 feet per day and in 4 weeks the total of 3 feet.</span>
So,
The secret to solving problems with ratios is to find the value of one unit.
5:7 = 12 units total
To find one unit, divide the total number of students by the total number of units.
600/12 = a
Simplify
50/1 = a
50 = a
The value of each unit is 50.
Now, multiply the units by the numbers in the ratio.
50(5) = b
250 = boys
50(7) = x
350 = x
There are 350 girls.
Answer:
Option d) 5 to the power of negative 5 over 6 is correct.
![\dfrac{\sqrt[3]{\bf 5} \times \sqrt{\bf 5}}{\sqrt[3]{\bf 5^{\bf 5}}}= 5^{\frac{\bf -5}{\bf 6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B%5Cbf%205%7D%20%5Ctimes%20%5Csqrt%7B%5Cbf%205%7D%7D%7B%5Csqrt%5B3%5D%7B%5Cbf%205%5E%7B%5Cbf%205%7D%7D%7D%3D%205%5E%7B%5Cfrac%7B%5Cbf%20-5%7D%7B%5Cbf%206%7D%7D)
Above equation can be written as 5 to the power of negative 5 over 6.
ie, 
Step-by-step explanation:
Given that cube root of 5 multiplied by square root of 5 over cube root of 5 to the power of 5.
It can be written as below
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{1}{3}} \times 5^{\frac{1}{2}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%20%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Ctimes%205%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{1}{3}+\frac{1}{2}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{2+3}{6}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B2%2B3%7D%7B6%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= 5^{\frac{5}{6}} \times 5^{\frac{-5}{3}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%205%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%20%5Ctimes%205%5E%7B%5Cfrac%7B-5%7D%7B3%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= 5^{\frac{5-10}{6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%205%5E%7B%5Cfrac%7B5-10%7D%7B6%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{5^5}= 5^{\frac{-5}{6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B5%5E5%7D%3D%205%5E%7B%5Cfrac%7B-5%7D%7B6%7D%7D)
Above equation can be written as 5 to the power of negative 5 over 6.