Answer:
10.347 minutes.
Explanation:
According to F = ma, she exerts force on camera of the magnitude
F = 0.67Kg*12m/
= 8.04N, assuming it took her one second to accelerate camera to 12m/s, then by newtons third law, which says every action has equal and opposite reaction , the camera exerts the same amount of force on the astronaut which gives her acceleration of a =
.
and velocity of V = 0.1130801680m/s.
at this velocity , the astronaut has to cover the distance of 70.2 meters, it will take her 620.7985075s = 10.347 min to get to the shuttle (using S = vt).
<h2>
Person must have 8.18 m/s to catch the ball</h2>
Explanation:
Consider the vertical motion of ball
We have equation of motion s = ut + 0.5at²
Initial velocity, u = 12 m/s
Acceleration, a = -9.81 m/s²
Displacement, s = -25 m
Substituting
-25 = 12 x t + 0.5 x -9.81 x t²
4.905 t² -12t - 25 = 0
t = 3.79 sec
Ball hits ground after 3.79 seconds.
So person need to cover 31 m in 3.79 seconds
Consider the horizontal motion of person
We have equation of motion s = ut + 0.5at²
Initial velocity, u = ?
Acceleration, a = 0 m/s²
Displacement, s = 31 m
Time, t = 3.79 seconds
Substituting
31 = u x 3.79 + 0.5 x 0 x 3.71²
u = 8.18 m/s
Person must have 8.18 m/s to catch the ball
Explanation:
Mass of baseball, m = 0.148 kg
Initial speed of the ball, u = 14.5 m/s
Final speed of the ball, v = 11.5 m/s
After crashing through the pane of a second-floor window, the ball shatters the glass as it passes through, and leaves the window at 11.5 m/s with no change of direction. So, the direction of the impulse that the glass imparts to the baseball is in opposite direction to the direction of the balls path.
The change in momentum of the ball is called impulse. It is given by :

Hence, this is the required solution.
There are two general types of collisions, inelastic and elastic.
Inelastic collisions occur when two objects collide but neither of them bounce away from each other.
Collisions in which the objects do not touch each other are elastic. (Ex: Rutherford Scattering)
Answer:
Explanation:
you can seperate mixtures by filtration, evaporation, distillation and chromatography.