Solution :
The given figure is a loop of a wire with a resistor.
When the switch S is closed for long time and is suddenly opened, the direction of the induced current can be find out by using the rule of right hand screw. According to the right hand screw rule, the direction of the magnetic field at the loop is in the direction that points outwards. The strength of the current rapidly decreases as it is switch off and the magnetic flux that is linked with the loop wire will also decrease.
According to the Lenz's law, the direction of the induced current must be such
the decrease in the magnetic flux. It means the direction of the magnetic field must be outwards and also normal to the plane of the screen. The direction of the induced anti clockwise or from right to left in the resistance.
Answer:
The forces are balanced on both animals because they are not moving
More importantly than not moving is not <u>accelerating.</u>
Explanation:
Answer:
Visible light
X rays
ultraviolet radiation
gamma rays
microwave radiation
Explanation:
Electromagnetic waves consist of oscillating electric and magnetic fields which vibrate in a direction perpendicular to the direction of motion of the wave (transverse wave). Electromagnetic waves have all same speed in a vacuum (
, known as speed of light) and are classified into 7 different types according to their frequency and wavelength. This classification is called electromagnetic spectrum.
From lowest to highest wavelength, the 7 types are:
Gamma rays
X-rays
Ultraviolet radiation
Visible light
Infrared radiation
Microwaves
Radio waves
Sound waves, on the contrary, do not belong to the electromagnetic spectrum, since they are another type of wave called mechanical waves (which consist of vibrations of the particles in a medium).
The sun is a huge ball of gas held together by gravity.
It does not burn the way wood does, due to oxygen, but it gets energy by a process called nuclear fusion, where Hydrogen is converted to Helium.
The sun will cease to "burn" when it runs out of Hydrogen, but that has a long way to go.
To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

Where,
F = Force
r = Radius
Replacing we have that,



The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore


Finally, angular acceleration is a result of the expression of torque by inertia, therefore



PART B)
The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians
, therefore


