Answer:
A) Does not change
B) Decrease
C) Increasing
D) Increasing
Explanation:
When it pushes it's volume is reduced by 1/3 because it's Area is constant there for only volume is decreased. Then the number of molecules don't change
A) don,t change
B) Decreases
C) Density is increased because it mass doesn't change. there for
Mass = Density * Volume
When Volume is decreasing to keep mass constant Density will be increased.
D) Pressure is increased according to the boil's law. it says that for fixed mass and fixed temperature pressure is inversely proportional to the volume. then volume decrease pressure increase
Answer:
d. No, porque la ecuación de trabajo lo define.
Explanation:
En Física, el trabajo realizado se puede definir como la cantidad de energía transferida cuando un objeto o cuerpo se mueve a lo largo de una distancia debido a la acción de una fuerza externa.
Matemáticamente, el trabajo realizado viene dado por la fórmula;
<u>Dónde;</u>
- W es el trabajo realizado.
- F representa la fuerza que actúa sobre un cuerpo.
- d representa la distancia recorrida por el cuerpo.
Por lo tanto, podemos deducir de la definición de trabajo y su fórmula que el trabajo se realiza cuando un objeto (cuerpo) se mueve una distancia o experimenta cualquier forma de desplazamiento mientras transfiere energía.
I guess the problem is asking for the induced emf in the coil.
Faraday-Neumann-Lenz states that the induced emf in a coil is given by:

where
N is the number of turns in the coil

is the variation of magnetic flux through the coil

is the time interval
The coil is initially perpendicular to the Earth's magnetic field, so the initial flux through it is given by the product between the magnetic field strength and the area of the coil:

At the end of the time interval, the coil is parallel to the field, so the final flux is zero:

Therefore, we can calculate now the induced emf by using the first formula:
Answer:
(a) 47.08°
(b) 47.50°
Explanation:
Angle of incidence = 78.9°
<u>For blue light :
</u>
Using Snell's law as:
Where,
Θ₁ is the angle of incidence
Θ₂ is the angle of refraction
n₂ is the refractive index for blue light which is 1.340
n₁ is the refractive index of air which is 1
So,
Angle of refraction for blue light = sin⁻¹ 0.7323 = 47.08°.
<u>For red light :
</u>
Using Snell's law as:
Where,
Θ₁ is the angle of incidence
Θ₂ is the angle of refraction
n₂ is the refractive index for red light which is 1.331
n₁ is the refractive index of air which is 1
So,
Angle of refraction for red light = sin⁻¹ 0.7373 = 47.50°.
Answer:
The escape speed of the planet is 41.29 m/s.
Explanation:
Given that,
Speed = 52.9 m/s
Final speed = 32.3 m/s
We need to calculate the launched with excess kinetic energy
Using formula of kinetic energy


We need to calculate the escape speed of the planet
Using formula of kinetic energy





Hence, The escape speed of the planet is 41.29 m/s.