1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OleMash [197]
3 years ago
10

the specific heat of water is 4.2 j/c. if it takes 31,500 joules to heat to warm 750 g of water, what was the temperature change

?
Physics
1 answer:
defon3 years ago
7 0
The amount of heat needed to increase the temperature of a substance by \Delta T is given by
Q=mC_s \Delta T
where
m is the mass of the substance
C_s the specific heat capacity
\Delta T the increase in temperature

In our problem, the mass of the water is m=750 g, the specific heat is C_s = 4.2 J/g ^{\circ}C and the amount of heat supplied is Q=31500 J, so if we re-arrange the previous formula we find the increase in temperature of the water:
\Delta T= \frac{Q}{m C_s}= \frac{31500 J}{(750 g)(4.20 J/g^{\circ} C)}=10^{\circ}C
You might be interested in
A cosmic-ray proton in interstellar space has an energy of 10.0 MeV and executes a circular orbit having a radius equal to that
kherson [118]

Answer:

= 7.88 × 10^-12 T

Explanation:

From the above question, we are told that:

Kinetic Energy of the proton is K. E = 10.0 MeV

Step 1

We convert 10.0 MeV to Joules

1 Mev = 1.602 × 10-13 Joules

10.0 MeV = 10.0 × 1.602 × 10^-13 Joules = 1.602 × 10^-12 J

Hence, the Kinectic energy of a proton = 1.602 × 10^-12 J

Step 2

Find the Speed of the Proton

The formula for Kinectic Energy =

K.E = 1/ 2 mv²

Where

m = mass of the proton

v = speed of the proton

K.E of the proton = 1.602 × 10^-12 J

Mass of the proton = 1.6726219 × 10^-27 kilograms

Speed of the proton = ?

1.602 × 10^-12J = 1/2 × 1.6726219 × 10^-27 × v²

1.602 × 10^-12J = 8.3631095 ×10^-28 × v²

v² = 1.602 × 10^-12/8.3631095 ×10^-28

v = √(1.602 × 10^-12/8.3631095 ×10^-28)

v = 43772331.227m/s

v = 4.3772331227 × 10^7m/s

Approximately = 4.4 × 10^7 m/s

Step 3

Find the Magnetic Field of that region of space

The formula for Magnetic Field =

B = m v / q r

We are told that the proton executes a circular orbit, hence,

mv = √2m(KE)

m = Mass of the proton = 1.6726219 × 10^-27 kg

K.E of the proton = 1.602 × 10^-12 J

v = speed of the proton = 4.4 × 10^7 m/s

q = Electric charge = 1.6 × 10^-19 C

r = radius of the orbit = 5.80Ã10^10 m

= 5.8 × 10^10m

Magnetic Field =

=√ (2 × 1.6726219 × 10^-27 kg × 1.602 × 10^-12 J) /( 1.6 × 10^-19 C × 5.80 × 10^10 m)

= 7.88 × 10^-12 T

The magnetic field in that region of space is approximately 7.88 × 10^-12 T

4 0
3 years ago
Obi Wan hears the destruction of a planet and all of its people through 'the force'. These sounds are only in his head and are n
trapecia [35]

Answer:

medium

Explanation:

<em>A sound </em><em>medium</em><em> is defined as channel through which sound can travel or be transmitted. </em>

Sound medium could be in the form gases, liquids, solids or plasmas. Space is made up of vacuum and therefore, has no medium within it. Hence, space cannot transmit sound in any form or allows sound to travel through it.

6 0
3 years ago
A freshly prepared sample of radioactive isotope has an activity of 10 mCi. After 4 hours, its activity is 8 mCi. Find: (a) the
Maurinko [17]

Answer:

(a). The decay constant is 1.55\times10^{-5}\ s^{-1}

The half life is 11.3 hr.

(b). The value of N₀ is 2.38\times10^{11}\ nuclei

(c). The sample's activity is 1.87 mCi.

Explanation:

Given that,

Activity R_{0}=10\ mCi

Time t_{1}=4\ hours

Activity R= 8 mCi

(a). We need to calculate the decay constant

Using formula of activity

R=R_{0}e^{-\lambda t}

\lambda=\dfrac{1}{t}ln(\dfrac{R_{0}}{R})

Put the value into the formula

\lambda=\dfrac{1}{4\times3600}ln(\dfrac{10}{8})

\lambda=0.0000154\ s^{-1}

\lambda=1.55\times10^{-5}\ s^{-1}

We need to calculate the half life

Using formula of half life

T_{\dfrac{1}{2}}=\dfrac{ln(2)}{\lambda}

Put the value into the formula

T_{\dfrac{1}{2}}=\dfrac{ln(2)}{1.55\times10^{-5}}

T_{\dfrac{1}{2}}=44.719\times10^{3}\ s

T_{\dfrac{1}{2}}=11.3\ hr

(b). We need to calculate the value of N₀

Using formula of N_{0}

N_{0}=\dfrac{3.70\times10^{6}}{\lambda}

Put the value into the formula

N_{0}=\dfrac{3.70\times10^{6}}{1.55\times10^{-5}}

N_{0}=2.38\times10^{11}\ nuclei

(c). We need to calculate the sample's activity

Using formula of activity

R=R_{0}e^{-\lambda\times t}

Put the value intyo the formula

R=10e^{-(1.55\times10^{-5}\times30\times3600)}

R=1.87\ mCi

Hence, (a). The decay constant is 1.55\times10^{-5}\ s^{-1}

The half life is 11.3 hr.

(b). The value of N₀ is 2.38\times10^{11}\ nuclei

(c). The sample's activity is 1.87 mCi.

4 0
3 years ago
Please, Help!!
Elenna [48]

Let, 1st force = a

2nd force = b

A.T.Q,

a+b = 10

a-b = 6

Calculate for a & b, you'll get a=8 & b= 2

After increasing by 3, it'll be a = 8+3 = 11 & b=2+3 = 5

Resultant force at 90 degree angle = 11+5 = 16 Newtons

7 0
3 years ago
Read 2 more answers
A penny is dropped off the top of the Stratosphere from rest and falls freely with the
Roman55 [17]

Answer:

S = 122.5m

Explanation:

Given the following data;

Acceleration due to gravity = 9.8m/s²

Time, t = 5 seconds

Since it's a free fall, initial velocity, u = 0

To find the displacement, we would use the second equation of motion given by the formula;

S = ut + \frac {1}{2}at^{2}

Where;

  • S represents the displacement or height measured in meters.
  • u represents the initial velocity measured in meters per seconds.
  • t represents the time measured in seconds.
  • a represents acceleration measured in meters per seconds square.

Substituting into the equation, we have;

S = 0*5 + \frac {1}{2}*(9.8)*5^{2}

S = 0 + 4.9*25

S = 122.5m.

3 0
3 years ago
Other questions:
  • Find the change in the force of gravity between two planets when the distance between them is reduced to one-tenth of the origin
    10·1 answer
  • Newton’s law of cooling states that dx dt = −k(x−A) where x is the temperature,t is time, A is the ambient temperature, and k &g
    10·1 answer
  • What two functions does the evaporator of a domestic refrigerator perform?
    9·1 answer
  • The engine on a fighter airplane can exert a force of 105,840 N (24,000 pounds). The take-off mass of the plane is 16,875 kg. (I
    8·1 answer
  • A sample of a gas is expanded to twice its original volume while its temperature is held constant. Relative to their original av
    8·1 answer
  • A body travels 10 meters during the first 5 seconds of its travel, and it travels a total of 30 meters over the first 10 seconds
    8·1 answer
  • A car travels 25 kilometers in one hour. If it does not change its speed or direction, how far will the car travel in the next h
    8·1 answer
  • Which will heat up fast, metal or cotton?
    5·2 answers
  • 1 ) when a ball is projected upwords its time of rising is ...............the time of falling .
    8·1 answer
  • A 21 KG chair initially at rest on a horizontal floor requires a 167 N horizontal force to set it in motion once the chair is in
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!