Answer:
Distance is 100m, displacement is 0m
Explanation:
Distance is how much you travelled in total (100m)
Displacement is when you compare your final and initial positions.
It is usually Final position - Initial position.
Since you start and finish at the same point, it would be 0 - 0 = 0m
So the displacement is 0m.
Answer:
1.74x10⁻⁵ V
Explanation:
n = 85.7 turns/cm => 8570 turns/metre
The field inside the long solenoid is given by B = μ₀ni
B = 4πx10⁻⁷ x 8570 x 0.175t² = 1.884x10⁻³ t²
dB/dt = 3.78x10⁻³ t
Cross-sectional Area'A'= 2.16 cm²=> 2.16 x
m²
Now, rate of change of flux linkage '|Emf|' is given by:
|Emf| = d(NAB)/dt = NA dB/dt
|Emf| = 5 x 2.16 x
x 3.78x10⁻³ t
|Emf| = 4.0824x10⁻⁶ t
Considering time 't' at which the current = 3.2A
, we have
3.2 = 0.175T²
T²
= 3.2/0.175
T = 4.28 s
|emf| = 4.0824x10⁻⁶ t => 4.0824x10⁻⁶ x4.28
|emf|= 1.74x10⁻⁵ V
Therefore,the magnitude of the emf induced in the secondary winding is 1.74x10⁻⁵ V
Answer:
Part a)

Part b)

Explanation:
Part a)
Since the two magnetic field is in same direction
so the net magnetic field is algebraic sum of magnetic field due to both
so here magnetic field of wire is given as

here we know that
I = 2 A
r = 5 cm
so we will have


So net magnetic field is given as

Part b)
When direction of current is reversed then the direction of magnetic field is also reversed
So we will have

Answer:
Hi myself Shrushtee.
Explanation:
Artificial gravity is a must for any space station if humans are to live there for any extended length of time. Without artificial gravity, human growth is stunted and biological functions break down. An effective way to create artificial gravity is through the use of a rotating enclosed cylinder, as shown in the figure. Humans walk on the inside edge of the cylinder, which is sufficiently large (diameter of 2235 meters) that its curvature is not readably noticeable to the inhabitants. (The space station in the figure is not drawn to the scale of the human.) Once the space station is rotating at the necessary speed, how many minutes would it take the space station to make one revolution?
The distance traveled by the man in one revolution is simply the circumference of the space station, C = 2p R. From this result, you should be able to deduce the time it takes for the space station to sweep out a complete revolution.
<h2>
<em><u>P</u></em><em><u>lease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainleist</u></em></h2>
Answer:
It would be B because the warm air heats up and then burns the marshmallow. And the heat and the marshmallow were touching each other
Explanation: