Answer:
9:36 and how far it will travel is 26 minutes
Convert the given in SI units.
(44 ft/sec)(1 m/ 3.28 ft) = 13.41 m/sec
The distance traveled and the initial velocity can be related through the equation,
d = (Vf)² - (Vi)²/ 2a
where d is the distance, Vf is the final velocity, Vi is the initial velocity, a is the acceleration due to gravity. Substituting the known values from the given above,
d = ((0 m/s)² - (13.41 m/s)²)/ 2(-9.8 m/s²)
The value of d from the equation,
d = 9.17 meters
Convert this to feet,
d = (9.17 m)(3.28 ft / 1 m) = 30 ft
Answer: 30 ft
Answer:

Explanation:
<u>Instant Acceleration</u>
The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.
Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

And the acceleration is

Or equivalently

The given height of a projectile is

Let's compute the speed

And the acceleration

It's a constant value regardless of the time t, thus

Answer:
Total charge provided by the battery could be 900000 C.
Maximum current provided by the battery for 37 minutes could be 405.405 A
Explanation:
Rating= 250 A-h
a. Total charge:

Suppose t=1h

We konw that
, replacing:

Total charge provided by the battery could be 900000 C.
b. Maximum current for 37 minutes

Maximum current provided by the battery for 37 minutes could be 405.405 A
Answer:
0.4 m/s2
Explanation:
mass: 25kg
net force: 10 N
acceleration: ?
net force ÷ by mass= acceleration
10 N ÷ 25 Kg = 0.4 m/s2