Answer:
a) F = 3.2 10⁻¹⁰ N
, b) v = 9.9 10⁷ m / s
Explanation:
a) The electric force is
F = q E
The electric field is related to the potential reference
V = E d
E = V / d
Let's replace
F = e V / d
Let's calculate
F = 1.6 10⁻¹⁹ 28 10³ / 1.4 10⁻²
F = 3.2 10⁻¹⁰ N
b) For this part we can use kinematics
v² = v₀ + 2 a d
v = √ 2 ad
Acceleration can be found with Newton's second law
e V / d = m a
a = e / m V / d
a = 1.6 10⁻¹⁹ / 9.1 10⁻³¹ 28 10³ / 1.4 10⁻²
a = 3,516 10⁻¹⁷ m / s²
Let's calculate the speed
v = √ (2 3,516 10¹⁷ 1.4 10⁻²)
v = √ (98,448 10¹⁴)
v = 9.9 10⁷ m / s
Answer:

Explanation:
We are given that
Gravitational force=
r=0,U(0)=0
We know that
Gravitational potential energy=


Substitute r=0 ,U(0)=0


Substitute the value

Momentum = mass x velocity
12 = 4 x v | ÷ both sides by 4
12 ÷ 4 =v
v= 3 m/s
Given:
Uniform distributed load with an intensity of W = 50 kN / m on an overhang beam.
We need to determine the maximum shear stress developed in the beam:
τ = F/A
Assuming the area of the beam is 100 m^2 with a length of 10 m.
τ = F/A
τ = W/l
τ = 50kN/m / 10 m
τ = 5kN/m^2
τ = 5000 N/ m^2<span />
Answer:
If she ___(be) rich, she _____ (buy) a new sports car.
Group of answer choices
is/buys
be/buy
were/would buy
were/bought