Answer:
Average speed = 3.63 m/s
Explanation:
The average speed during any time interval is equal to the total distance travelled divided by the total time.
That is,
Average speed = distance/ time
Let d represent the distance between A and B.
Let t1 be the time for which she has the higher speed of 5.15 m/s. Therefore,
5.15 = d/t1.
Make d the subject of formula
d = 5.15t1
Let t2 represent the longer time for the return trip at 2.80 m/s . That is,
2.80 = d/t2.
Then the times are t1 = d/5.15 5 and
t2 = d/2.80.
The average speed vavg is given by the following equation.
avg speed = Total distance/Total time
Avg speed = d + d/t1 + t2
Where
Total distance = 2d
Total time = t1 + t2
Total time = d/5.15 + d/2.80
Total time = (2.8d + 5.15d)/14.42
Total time = 7.95d/14.42
Total time = 0.55d
Substitute total distance and time into the formula above.
Avg speed = 2d / 0.55d
Avg Speed = 3.63 m/s
Answer:
0.54 A
Explanation:
Parameters given:
Number of turns, N = 15
Area of coil, A = 40 cm² = 0.004 m²
Change in magnetic field, ΔB = 5.1 - 1.5 = 3.6 T
Time interval, Δt = 2 secs
Resistance of the coil, R = 0.2 ohms
To get the magnitude of the current, we have to first find the magnitude of the EMF induced in the coil:
|V| = |(-N * ΔB * A) /Δt)
|V| = | (-15 * 3.6 * 0.004) / 2 |
|V| = 0.108 V
According to Ohm's law:
|V| = |I| * R
|I| = |V| / R
|I| = 0.108 / 0.2
|I| = 0.54 A
The magnitude of the current in the coil of wire is 0.54 A
Given Information:
Power = P = 100 Watts
Voltage = V = 220 Volts
Required Information:
a) Current = I = ?
b) Resistance = R = ?
Answer:
a) Current = I = 0.4545 A
b) Resistance = R = 484 Ω
Explanation:
According to the Ohm’s law, the power dissipated in the light bulb is given by

Where V is the voltage across the light bulb, I is the current flowing through the light bulb and P is the power dissipated in the light bulb.
Re-arranging the above equation for current I yields,

Therefore, 0.4545 A current is flowing through the light bulb.
According to the Ohm’s law, the voltage across the light bulb is given by

Where V is the voltage across the light bulb, I is the current flowing through the light bulb and R is the resistance of the light bulb.
Re-arranging the above equation for resistance R yields,

Therefore, the resistance of the bulb is 484 Ω
Answer:
Explanation:
Physics gets involved in your daily life right from you wake up in the morning. The buzzing sound of an alarm clock helps you wake up in the morning as per your schedule. The sound is something that you can't see, but hear or experience. Physics studies the origin, propagation, and properties of sound
Longitudinal waves transfer energy parallel to the direction of the wave motion