Inertia I think because I've heard it around school and in science
Answer:
i) 24.5 m/s
ii) 30,656 m
iii) 89,344 m
Explanation:
Desde una altura de 120 m se deja caer un cuerpo. Calcule a 2.5 s i) la velocidad que toma; ii) cuánto ha disminuido; iii) cuánto queda por hacer
i) Los parámetros dados son;
Altura inicial, s = 120 m
El tiempo en caída libre = 2.5 s
De la ecuación de caída libre, tenemos;
v = u + gt
Dónde:
u = Velocidad inicial = 0 m / s
g = Aceleración debida a la gravedad = 9.81 m / s²
t = Tiempo de caída libre = 2.5 s
Por lo tanto;
v = 0 + 9.8 × 2.5 = 24.5 m / s
ii) El nivel que el cuerpo ha alcanzado en 2.5 segundos está dado por la relación
s = u · t + 1/2 · g · t²
= 0 × 2.5 + 1/2 × 9.81 × 2.5² = 30.656 m
iii) La altura restante = 120 - 30.656 = 89.344 m.
Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2
Inductive reactance (Z) = ω L = 2Πf L = (2Π) (12,000) (L)
I = V / Z
4 A = 16v / (24,000Π L)
Multiply each side by (24,000 Π L):
96,000 Π L = 16v
Divide each side by (96,000 Π) :
L = 16 / 96,000Π = 5.305 x 10⁻⁵ Henry
L = 53.05 microHenry
The time taken by the light reflected from sun to reach on earth will be 8.4 minutes.
To find the answer, we need to know about the distance travelled by light.
<h3>How to find the time taken by the light reflected from sun to reach on earth?</h3>
- So, in order to solve this problem, we must first know how far the moon is from Earth and how far the Sun is from the moon.
- These distances are given as 3.8×10^5 km (Earth-Moon) and 1.5×10^8 km (Sun- Earth).
- Since the Moon and Sun are on opposite sides of Earth during a full moon, the light's distance traveled equals,

- As we know that light travels at a speed of 300,000 km per second. then, the time taken by the light reflected from sun to reach on earth will be,

Thus, the time it takes for the light from the Sun to reach Earth and be recognized as 8.4 minutes.
Learn more about distance here:
brainly.com/question/11495758
#SPJ4