Answer:
The time for the cake to cool off to room temperature is
approximately 30 minutes.
Let
=
F be the temperature and T that of the body
Explanation:
Our Tm = 70, the initial-value problem is
= <em>k</em>(T − 70), T(0) = 300
Solving the equation, we get
= <em>kdt</em>
In [T-70]= <em>kt </em>+
T = 70 +

Finding he value for
using the initial value of T (0)= 300, therefore we get:
300=70+
= 230 therefore
T= 70+ 230 
Finding the value for <em>k </em>using T (3) = 200, therefore we get
T (3) = 200
= 
<em>K </em>=
in 
= -0.19018
Therefore
T(t) = 70+230
When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will <u>"pull back".</u>
Newton's third law of motion expresses that, at whatever point a first question applies a power on a second object, the first object encounters a power meet in extent however inverse in heading to the power that it applies.
Newton's third law of movement reveals to us that powers dependably happen in sets, and one question can't apply a power on another without encountering a similar quality power consequently. We once in a while allude to these power matches as "action-reaction" sets, where the power applied is the activity, and the power experienced in kind is the response (despite the fact that which will be which relies upon your perspective).
Answer:
You could put over six planets the size of Mars inside the Earth. The largest planet in our Solar System, Jupiter's size is astounding. Jupiter has a volume of 1.43 x 1015 cubic kilometers. To show what this number means, you could fit 1321 Earths inside of Jupiter
Explanation:
Answer: A little more that 5 Kg for a healthy person
Explanation: First, we know the following:
The regular adult has from 9 to 12 pints of blood. This is around 5 liters for a healthy male adult.
The human body is composed mostly on water, around 80%.
Blood is mostly composed on plasma, which makes blood thicker than water.
Knowing that, almost all the body is compose of water, it is safe to think that blood density should be near to that of water but higher.
The density on water is a know value. Which makes the following true:
<em>1 Liter of Water weights 1 Kg</em>
<em />
It could be said then, that the total mass of blood for a healthy person should be a little more that 5 kgs.