Moving an object up an inclined plane<span> requires </span>less<span>force </span>than<span> lifting it straight up, at a cost of an increase in the distance moved. The </span>mechanical advantage<span>of an </span>inclined plane<span>, the factor by which the force is reduced, is equal to the ratio of the length of the sloped surface to the height it spans.</span>
We are given information:
m = 0.0450 kg
Δv = 25.2 m/s
Δt = 1.95 ms = 0.00195s
To find force we use formula:
F = m * a
a is acceleration. To find it we use formula:
a = Δv / Δt
a = 25.2 / 0.00195
a = 12923.1 m/s^2
Now we can find force:
F = 0.0450 * 12923.1
F = 581.5 N
To check the effect of the ball's weight on this movement we need to calculate it and then compare it to this force.
W = m * g
W = 0.0450 * 9.81
W = 0.44145 N
We can see that weight is much smaller than the applied force so it's influence in negligible.
<span>This projectile has been thrown in an oblique movement, so it’s moving in x and in y at the same time. Vy varies due to gravity, and Vx is a constant as there is no gravity in the horizontal direction. In order to calculate Vx, you have to use the angle:
Vx=V*cosa=12m/s*cos(14.2)= 11.6m/s
So now you should use Vx the same way it is used in a uniform linear movement.
d=v*t
dx=vx*t
t=dx/vx=7m/(11.6m/s)=0.603s</span>
When sedimentary rock is exposed to heat and pressure it changes into METAMORPHIC ROCK.
Heat and pressure have the capacity to change a rock into a completely new type of rock. An igneous rock or a sedimentary rock can be changed into a metamorphic rock as a result of heat and pressure which the rock is subjected to. Metamorphic rocks are usually formed from already existing rocks that are exposed to pressure and heat.
A flow of electric charge from one place to another is electric 'current'.
Also:
When you post a multiple-choice question,
please post the choices along with it.
Thank you.