1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivolga24 [154]
3 years ago
7

What activity would require more impulse?

Physics
1 answer:
Gnesinka [82]3 years ago
3 0

B. Accelerating a bowling ball from rest to 35 m/s

Explanation:

Accelerating a bowling ball from rest to 35m/s will require more impulse compared to a baseball.

Impulse is the force acting on a body a particular period of time. It is similar to momentum.

When impulse is applied on a body, it change it state from rest and cause motion.

A body with more mass will require a higher impulse to cause it to accelerate. Bowling balls are heavier. They require more impulse to make them move.

Learn more:

Momentum brainly.com/question/9484203

#learnwithBrainly

You might be interested in
One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a s
DedPeter [7]

Complete Question

One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a small patch of light on the far wall. Having recently studied optics in your physics class, you're not too surprised to see that the patch of light seems to be a circular diffraction pattern. It appears that the central maximum is about 2 cm across, and you estimate that the distance from the window shade to the wall is about 5 m.

Required:

Estimate the diameter of the pinhole.  

Answer:

The diameter is  d =0.000336 m

Explanation:

     From the question we are told that

            The central maxima is D= 2cm = \frac{2}{100} = 0.02m

            The distance from the window shade is L = 5m

     The  average wavelength of the  sun is mathematically evaluated as

                         \lambda_{ave } = \frac{\lambda_i  + \lambda_f}{2}

 Generally the visible light spectrum  has a wavelength  range  between  400 nm  to 700 nm  

        So  the initial wavelength of the sun is \lambda _i = 400nm

           and the final wavelength is  \lambda_f = 700nm

  Substituting this into the above equation

                 \lambda_{sun} = \frac{400nm  +700nm}{2}

                        = 550nm

The diameter is evaluated as

              d = \frac{2.44 \lambda_{sun} L}{D}

substituting values

              d = \frac{2.44 * 550*10^{-9} * 5 }{0.02}

                d =0.000336 m

5 0
3 years ago
oe finds that the temperature of a substance is 12 degrees Celsius. What does this tell Zoe about the substance? Its internal en
Roman55 [17]

Its internal energy is less than 12 degrees

5 0
3 years ago
Read 2 more answers
A 20kg mass approaches a spring at a speed of 30 m/s. The mass compresses the spring 12cm before coming to a stop. Calculate the
Oksana_A [137]

Answer:

625000 N/ m

Explanation:

m= 20 kg

v= 30 m/s

x= 12 cm

k = ?

Here when the mass when hits at spring its speed is

Vi= 30 m/s

Finally it comes to rest after compressing for 12 cm

i-e Vf = 0 m/s

Distance= S= 12 cm = 0.12 m

using

2aS= Vf2 - Vi2

==> 2a ×0.12 = o- 30 × 30

==> a = 900 ÷ 0.24 = 3750 m/sec2

Now we know;

F = ma

F= -Kx

==> ma= -kx

==> 20 × 3750 = -K × 0.12

==> k = 625000 N/ m

5 0
3 years ago
In the design of a rapid transit system, it is necessary to balance the average speed of a train against the distance between st
bekas [8.4K]

Answer:

a) t = 746 s

b) t = 666 s

Explanation:

a)

  • Total time will be the sum of the partial times between stations plus the time stopped at the stations.
  • Due to the distance between stations is the same, and the time between stations must be the same (Because the train starts from rest in each station) we can find total time, finding the time for any of the distance between two stations, and then multiply it times the number of distances.
  • At any station, the train starts from rest, and then accelerates at 1.1m/s2 till it reaches to a speed of 95 km/h.
  • In order to simplify things, let's first to convert this speed from km/h to m/s, as follows:

       v_{1} = 95 km/h *\frac{1h}{3600s}*\frac{1000m}{1 km} = 26.4 m/s  (1)

  • Applying the definition of acceleration, we can find the time traveled by the train before reaching to this speed, as follows:

       t_{1} = \frac{v_{1} }{a_{1} } = \frac{26.4m/s}{1.1m/s2} = 24 s (2)

  • Next, we can find the distance traveled during this time, assuming that the acceleration is constant, using the following kinematic equation:

       x_{1} = \frac{1}{2} *a_{1} *t_{1} ^{2} = \frac{1}{2} * 1.1m/s2*(24s)^{2} = 316.8 m  (3)

  • In the same way, we can find the time needed to reach to a complete stop at the next station, applying the definition of acceleration, as follows:

       t_{3} = \frac{-v_{1} }{a_{2} } = \frac{-26.4m/s}{-2.2m/s2} = 12 s (4)

  • We can find the distance traveled while the train was decelerating as follows:

       x_{3} = (v_{1} * t_{3})   + \frac{1}{2} *a_{2} *t_{3} ^{2} \\ = (26.4m/s*12s) - \frac{1}{2} * 2.2m/s2*(12s)^{2} = 316.8 m - 158.4 m = 158.4m  (5)

  • Finally, we need to know the time traveled at constant speed.
  • So, we need to find first the distance traveled at the constant speed of 26.4m/s.
  • This distance is just the total distance between stations (3.0 km) minus the distance used for acceleration (x₁) and the distance for deceleration (x₃), as follows:
  • x₂ = L - (x₁+x₃) = 3000 m - (316.8 m + 158.4 m) = 2525 m (6)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{2525m}{26.4m/s} = 95.6 s   (7)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 95.6 s + 12 s = 131.6 s (8)
  • Due to we have six stations (including those at the ends) the total time traveled while the train was moving, is just t times 5, as follows:
  • tm = t*5 = 131.6 * 5 = 658.2 s (9)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 4 intermediate stops, we need to add to total time 22s * 4 = 88 s, as follows:
  • Ttotal = tm + 88 s = 658.2 s + 88 s = 746 s (10)

b)

  • Using all the same premises that for a) we know that the only  difference, in order to find the time between stations, will be due to the time traveled at constant speed, because the distance traveled at a constant speed will be different.
  • Since t₁ and t₃ will be the same, x₁ and x₃, will be the same too.
  • We can find the distance traveled at constant speed, rewriting (6) as follows:
  • x₂ = L - (x₁+x₃) = 5000 m - (316.8 m + 158.4 m) = 4525 m (11)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{4525m}{26.4m/s} = 171.4 s   (12)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 171.4 s + 12 s = 207.4 s (13)
  • Due to we have four stations (including those at the ends) the total time traveled while the train was moving, is just t times 3, as follows:
  • tm = t*3 = 207.4 * 3 = 622.2 s (14)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 2 intermediate stops, we need to add to total time 22s * 2 = 44 s, as follows:
  • Ttotal = tm + 44 s = 622.2 s + 44 s = 666 s (15)
7 0
2 years ago
Rama's weight is 4okg: She is carrying a load of 20kg up to a height of 20 meters.what work does she do?Also mention its type of
Maslowich

Answer:

rama is doing

Explanation:

work done=f×d×g

=60×20×9.8

=11760j

she is doing work against gravity

mark me

8 0
3 years ago
Other questions:
  • Blood should not be stored in which way?
    8·2 answers
  • A 5 kg block moves in a straight line on a horizontal frictionless surface under the influence of a force that varies with posit
    14·1 answer
  • If you were to descend 100 m below the surface of the ocean, you would be in _____.
    8·2 answers
  • While out hiking, you and your buddy decide to have some fun with the rocks laying all around. While sitting on a high cliff, ov
    10·1 answer
  • You pull the plunger back on a pinball machine. The spring is pulled back 25 cm from its rest position and has a spring constant
    15·1 answer
  • The function H(t) = -16t^2 + vt + s shows the height H (t), in feet, of a projectile launched vertically from s feet above the g
    15·1 answer
  • A 2.80 kg mass is dropped from a
    12·2 answers
  • 3) A lead bullet initially at 30 C just melts upon striking a target. Assuming that all of the initial kinetic energy of the bul
    8·1 answer
  • A commuter train passes a passenger platform at a constant speed of 39.6 m/s. The train horn is sounded at its characteristic fr
    7·1 answer
  • A force of 6.0 N gives a 2.0 kg block an acceleration of 3.0
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!