Answer:
The coefficient of kinetic friction between the crate and the floor can be calculated using the formula μ = Ff / N, where Ff is the frictional force, N is the normal force, and μ is the coefficient of kinetic friction.
In this case, the normal force is equal to the weight of the crate, which is 24 kg * 9.8 m/s2 = 235.2 N. The frictional force can be calculated using the formula Ff = μ * N, where μ is the coefficient of kinetic friction and N is the normal force.
If we substitute the values for N and Ff into the formula for the coefficient of kinetic friction, we get:μ = 53 N / 235.2 N = 0.225
Therefore, the coefficient of kinetic friction between the crate and the floor is 0.225.
The question looks incomplete, but according to the information given above seem like they have <span>identical journeys.
</span>a. the displacement of car A - <span> 65.5 m
</span>b. the displacement of car B - <span>65.5 m
c. average velocir</span>y of A

d. the average velocity of car B has the same.
A. A healthy body composition will improve range of motion and prevent injuries. Staying in a healthy weight range (BMI) prevents overexerting joints. It also helps increase range of motion which in turn reduces injury.
Answer:
F=94.32*10⁻⁹N , The force F is repusilve because both charges have the same sign (+)
Explanation:
Two point charges (q₁, q₂) separated by a distance (d) exert a mutual force (F) whose magnitude is determined by the following formula:
F=K*q₁*q₂/d² Formula (1)
F: Electric force in Newtons (N)
K : Coulomb constant in N*m²/C²
q₁,q₂:Charges in Coulombs (C)
d: distance between the charges in meters(m)
Equivalence
1nC= 10⁻⁹C
Data
K=8.99x10⁹N*m²/C²
q₁ = 7.94-nC= 7.94*10⁻⁹C
q₂= 4.14-nC= 4.14 *10⁻⁹C
d= 1.77 m
Magnitude of the electrostatic force that one charge exerts on the other
We apply formula (1):

F=94.32*10⁻⁹N , The force F is repusilve because both charges have the same sign (+)