Answer:
R=m*g-∀fl*g*l3
Explanation:
<em>An iron block of density rhoFe and of volume l 3 is immersed in a fluid of density rhofluid. The block hangs from a scale which reads W as the weight. The top of the block is a height h below the surface of the fluid. The correct equation for the reading of the scale is</em>
From Archimedes' principle we know that a body when immersed in a fluid, fully or partially, experiences an the upward buoyant force equal to the weight of the fluid displaced. As the body is fully submerged in water, volume of water displaced
density of iron =mass/ volume
rho=m/l3
mass=rhol3
weight fluid=rhofluid*g*Volume
weight of fluid=rhofluid*g*l3
F=∀fl*g*l3
Downward force is weight of iron
w=m*g
Reading on the spring scale
R=w-F
R=m*g-∀fl*g*l3
m=mass of iron
g=acceleration due to ravity
rhfld=density of fluid
l3=volume of fluid displaced
Answer:
True
Explanation:
Pre-questioning may help a reader focus on information s/he hopes to find in the reading selection.
Answer:
The leaves of the electroscope move further apart.
Explanation:
This is what happens; when the positive object is brought near the top, negative charges migrating from the gold leaves to the top. This is because the negative charges in the gold are attracted by the positive charge. Thus, it leaves behind a net positive charge on the leaves, though the scope remains neutral overall. To that effect, the leaves repel each other and move apart. If a finger touches the top of the electroscope at the moment when the positive object remains near the top, it basically grounds the electroscope and thus the net positive charge in the leaves flows to the ground through the finger. However, the positive object continues to "hold" negative charges in place at the top. Ar this moment the gold leaves have lost their net positive charge, so they no longer repel, and they move closer together. If the positive object is moved away, the negative charges at the top are no longer attracted to the top, and they redistribute themselves throughout the electroscope, moving into the leaves and charging them negatively.
Thus, the leaves move apart from each other again and we now have a negatively charged electroscope. If a negatively charged object is now brought close to the top, but without touching, the negative charges already in the electroscope will be repelled down toward the leaves, thereby making them more negative, causing them to repel more, and hence move even further apart.
So, the leaves move further apart.