<h3><em><u>given</u></em><em><u>:</u></em></h3>
<em><u>first</u></em><em><u> </u></em><em><u>trip</u></em><em><u>=</u></em><em><u> </u></em><em><u>5</u></em><em><u>0</u></em><em><u> </u></em><em><u>miles</u></em><em><u>.</u></em>
<em><u>second</u></em><em><u> </u></em><em><u>trip</u></em><em><u>=</u></em><em><u> </u></em><em><u>3</u></em><em><u>0</u></em><em><u>0</u></em><em><u> </u></em><em><u>miles</u></em><em><u>.</u></em>
<h3><em><u>to</u></em><em><u> </u></em><em><u>find</u></em><em><u>:</u></em></h3>
<em><u>his</u></em><em><u> </u></em><em><u>new</u></em><em><u> </u></em><em><u>time</u></em><em><u> </u></em><em><u>compared</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>old</u></em><em><u> </u></em><em><u>time</u></em><em><u>.</u></em>
<h3><em><u>solution</u></em><em><u>:</u></em></h3>
<em><u>Let speed of the 1st trip x miles / hr. and speed of the 2nd trip 3x / hr.</u></em>
<em><u>Speed = Distance/Time</u></em>
<em><u>So, times taken to covered a distance of 50 miles on his first trip = 50/x hr.</u></em>
<em><u>= 100/x hr</u></em>
<em><u>Therefore</u></em><em><u>,</u></em><em><u> </u></em><em><u>his new time compared with the old time was twice as much.</u></em>
<em><u>answer</u></em><em><u>=</u></em><em><u> </u></em><em><u>b</u></em><em><u>)</u></em><em><u> </u></em><em><u>twice</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>much</u></em>
To find the tangent plane to the surface f(x,y,z)=0 at a point (X,Y,Z) we use the following method:
<span>Calculate grad f = (f_x, f_y, f_z). The normal vector to the surface at the point (X,Y,Z) is grad f(X,Y,Z). The equation of a plane with normal vector n which passes through the point p is (r-p).n=0, where r=(x,y,z) is the position vector. So the equation of the tangent plane to the surface through the point (X,Y,Z) is ((x,y,z)-(X,Y,Z)).grad f(X,Y,Z)=0. </span>
<span>Now in your case we have f(x,y,z)=y-x^2-z^2, so grad f=(-2x,1,-2z), and the equation of the tangent plane at the point (X,Y,Z) is </span>
<span>((x,y,z)-(X,Y,Z)).(-2X,1,-2Z)=0, </span>
<span>that is </span>
<span>-2X(x-X)+1(y-Y)-2Z(z-Z)=0, </span>
<span>i.e. </span>
<span>-2Xx+y-2Zz = -2X^2+Y-2Z^2. (1) </span>
<span>Now compare this equation with the plane </span>
<span>x + 2y + 3z = 1. (2) </span>
<span>The two planes a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2 are parallel when (a_1,b_1,c_1) is a multiple of (a_2,b_2,c_2). So the two planes (1),(2) are parallel when (-2X,1,-2Z) is a multiple of (1,2,3), and we have </span>
<span>(-2X,1,-2Z)=1/2(1,2,3) </span>
<span>for X=-1/4 and Z=-3/4. On the paraboloid the corresponding y coordinate is Y=X^2+Z^2=1^4+9^4=5/2. </span>
<span>So the tangent plane to the given paraboloid at the point (-1/4,5/2,-3/4) is parallel to the given plane.</span>
Answer:
0.069 J
Explanation:
mass of first ball (M1) = 0.839 kg
mass of second ball (M2) = 0.839 kg
initial velocity of first ball (U1) = 0.406 m/s
initial velocity of second ball (U2) = 0 m/s
For head on elastic collisions of equal masses, the velocities of the masses always changes.and this has also been clearly stated in the question. Hence the velocity if mass A will interchange with that of mass B after collision.
therefore
final velocity of first ball (V1) = 0 m/s
final velocity of second ball (V2) = 0.406 m/s
kinetic energy of second ball after collision = 0.5m
= 0.5 x 0.839 x 0.406 x 0.406 = 0.069 J