I think your question should be:
An industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is

What is the rms value of (a) the electric field and
(b) the magnetic field in the electromagnetic wave emitted by the laser
Answer:
a) 
b) 
Explanation:
To find the RMS value of the electric field, let's use the formula:

Where
;
;

Therefore
![E_r_m_s = sqrt*{(1.239*10^9W/m^2) / [(3.00*10^8m/s)*(8.85*10^-^1^2C^2/N.m^2)]}](https://tex.z-dn.net/?f=%20E_r_m_s%20%3D%20sqrt%2A%7B%281.239%2A10%5E9W%2Fm%5E2%29%20%2F%20%5B%283.00%2A10%5E8m%2Fs%29%2A%288.85%2A10%5E-%5E1%5E2C%5E2%2FN.m%5E2%29%5D%7D%20)

b) to find the magnetic field in the electromagnetic wave emitted by the laser we use:
;
;

Answer:
The copper atoms are heavier than the aluminum atoms. The copper atoms are smaller than the aluminum atoms so more copper atoms fit in the same volume. 2. Copper is more dense than aluminum.
HOPE THIS HELPS !!!!!
Answer:
v' = 1.5 m/s
Explanation:
given,
mass of the bullet, m = 10 g
initial speed of the bullet, v = 300 m/s
final speed of the bullet after collision, v' = 300/2 = 150 m/s
Mass of the block, M = 1 Kg
initial speed of the block, u = 0 m/s
velocity of the block after collision, u' = ?
using conservation of momentum
m v + Mu = m v' + M u'
0.01 x 300 + 0 = 0.01 x 150 + 1 x v'
v' = 0.01 x 150
v' = 1.5 m/s
Speed of the block after collision is equal to v' = 1.5 m/s
B
the second chart shows a constant acceleration
Answer:
Explanation:
Given
mass of bullet 
speed of bullet 
bullet is stopped by building and heat produced is shared between building and bullet
Kinetic Energy of bullet is converted into Thermal energy
Kinetic Energy of bullet 


So 315.06 J of Energy is converted in to thermal energy