A believe that’s called a reference point.
Answer:
200 N
Explanation:
Since Young's modulus for the metal, E = σ/ε where σ = stress = F/A where F = force on metal and A = cross-sectional area, and ε = strain = e/L where e = extension of metal = change in length and L = length of metal wire.
So, E = σ/ε = FL/eA
Now, since at break extension = e.
So making e subject of the formula, we have
e = FL/EA = FL/Eπr² where r = radius of metal wire
Now, when the radius and length are doubled, we have our extension as e' = F'L'/Eπr'² where F' = new force on metal wire, L' = new length = 2L and r' = new radius = 2r
So, e' = F'(2L)/Eπ(2r)²
e' = 2F'L/4Eπr²
e' = F'L/2Eπr²
Since at breakage, both extensions are the same, e = e'
So, FL/Eπr² = F'L/2Eπr²
F = F'/2
F' = 2F
Since F = 100 N,
F' = 2 × 100 N = 200 N
So, If the radius and length of the wire were both doubled then it would break when the tension reached 200 Newtons.
Answer:
Evaporative Water Loss = 2 kg
Explanation:
According to the given condition, the water entering the body must be equal to the water leaving the body. Therefore,
Water Entering the Body = Water Leaving the Body
Feed Water + Drinking Water + Metabolic Water = Urine Water + Evaporative Water Loss
using the given values:
1 kg + 5 kg + 0.5 kg = 4.5 kg + Evaporative Water Loss
Evaporative Water Loss = 1 kg + 5 kg + 0.5 kg - 4.5 kg
<u>Evaporative Water Loss = 2 kg</u>
I don't know how good you are at sketching ... I'm terrible.
But you can put the point across in a dramatic way if you
can sketch a bowling ball and a basketball ... you'll need
to clearly identify them with the markings you sketch on
each ball.
They're the same shape and nearly the same size, but
there's a huge difference in their densities.