Answer:
- Neutral solutions: concentration of hydronium equals the concentration of hydroxide.
- Acid solutions: concentration of hydronium is greater than the concentration of hydroxide.
- Basic solutions concentration of hydronium is lower than the concentration of hydroxide.
Explanation:
Hello,
It is widely known that the pH of water is 7, therefore the pOH of water is also 7 based on:

In such a way, we can compute the concentration of hydronium and hydroxide ions as shown below:
![pH=-log([H^+])\\](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29%5C%5C)
![[H^+]=10^{-pH}=10^{-7}=1x10^{-7}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-7%7D%3D1x10%5E%7B-7%7DM)
![pOH=-log([OH^-])](https://tex.z-dn.net/?f=pOH%3D-log%28%5BOH%5E-%5D%29)
![[OH^-]=10^{-pOH}=10^{-7}=1x10^{-7}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D%3D10%5E%7B-7%7D%3D1x10%5E%7B-7%7DM)
Thus, we notice that the relationship between the concentration of the hydronium is equal for water or neutral solutions. Moreover, if we talk about acid solutions, pH<OH therefore the concentration of hydronium is greater than the concentration of hydroxide. On the other hand if we talk about basic solutions, pH>OH therefore the concentration of hydronium is lower than the concentration of hydroxide.
Best regards.
Answer:
d. The energy required to evaporate 1 kg of liquid water equals the energy released when 1 kg of water vapor condenses into liquid.
Explanation:
Hello,
Since we're considering the same amount of water, the vapor phase has a higher energy content than the liquid phase, thus, for the specified amount of water particles (those contained in the given 1 kg) the energy MUST be same when taking them either to a gaseous phase or to a liquid phase, the only difference is the sign which is negative from gaseous to liquid (heat withdrawal) and positive from liquid to gaseous (heat adding).
Best regards.
Answer:
4,1,4
Explanation:
Balancing a synthesis equation
The answer is: b. Safety glasses and acid-resistant gloves.
Battery acid (sulfuric acid) has pH = 0.
Sulfuric acid (H₂SO₄) is a strong acid, it means that the solution of sufuric acid is more acidic (pH<7) than water (pH = 7).
Chemical dissociation of sulfuric acid in water:
H₂SO₄(aq) → 2H⁺(aq) + SO₄²⁻(aq).
Sulfuric acid can come in contact with eyes and hands, so it is important to wear safety glasses and acid-resistant gloves.