Answer:

Explanation:
Hello there!
In this case, according to the given combustion reaction of octane, it is possible for us to perform the stoichiometric method in order to calculate the mass of octane that is required to consume 300.0 g of oxygen by considering the 2:25 mole ratio, and the molar masses of 114.22 g/mol and 32.00 g/mol respectively:

Regards!
Explanation:
Moles of metal,
=
4.86
⋅
g
24.305
⋅
g
⋅
m
o
l
−
1
=
0.200
m
o
l
.
Moles of
H
C
l
=
100
⋅
c
m
−
3
×
2.00
⋅
m
o
l
⋅
d
m
−
3
=
0.200
m
o
l
Clearly, the acid is in deficiency ; i.e. it is the limiting reagent, because the equation above specifies that that 2 equiv of HCl are required for each equiv of metal.
So if
0.200
m
o
l
acid react, then (by the stoichiometry), 1/2 this quantity, i.e.
0.100
m
o
l
of dihydrogen will evolve.
So,
0.100
m
o
l
dihydrogen are evolved; this has a mass of
0.100
⋅
m
o
l
×
2.00
⋅
g
⋅
m
o
l
−
1
=
?
?
g
.
If 1 mol dihydrogen gas occupies
24.5
d
m
3
at room temperature and pressure, what will be the VOLUME of gas evolved?
Answer:
In general, print publications with authors and listed sources tend to be reliable because they provide sources which readers can verify. Likewise, Web postings with a .gov (posted by the United States government) are both current and reliable.
Explanation:
2.24 liters is the volume of the gas if pressure is increased to 1000 Torr.
Explanation:
Data given:
Initial volume of the gas V1 = 2.6 liters
Initial pressure of the gas P1 = 860 Torr 1.13 atm
final pressure on the gas P2 = 1000 Torr 1.315 atm
final volume of the gas after pressure change V2 =?
From the data given above, the law used is :
Boyles Law equation:
P1V1 = P2V2
V2 = P1V1/P2
= 1.13 X 2.6/ 1.31
= 2.24 Liters
If the pressure is increased to 1000 Torr or 1.315 atm the volume changes to 2.24 liters. Initially the volume was 2.6 litres and the pressure was 860 torr.
Remember this:
1) n is principal quantum number and represents the energy level.
2) l is the second quantum number and represent the type of orbital.
3) l can take values from 0 to n - 1
4) each number of l is associated with a type of orbital. This table shows the equivalence:
l number type of orbital
0 s
1 p
2 d
3 f
With that, you can tell that n = 2 permits l = 0 and 1, which is orbitals s and p.
Therefore, the answer is the option D) s, p.