Q1. Option 2: basketball
Q2: Newton's first law is <span>the </span>law<span> of inertia. </span>An object at rest stays at rest and an object in motion stays in motion.
<span>
</span>
<span>Q3. A basketball sitting on the floor stays there and a basketball rolling on court keeps on rolling.</span>
<span>
</span>
<span>Q4 Second law says acceleration is dependent upon net force and mass of the object.</span>
Q5. Basketball accelerates when a player tries to dunk it with both hands.
<span>Q6. Third law says f<span>or every action, there is an equal and opposite reaction.</span></span>
<span><span>
</span></span>
<span><span>Q7. As a player dribbles, the force the basketball hits the floor with is the same as the force from the floor on the ball. That is why the ball bounces back up in air.</span></span>
<span><span>
</span></span>
Answer:
A wet body has a relatively high concentration of water. When this is transferred to a towel, the large surface area of the towel fabric distributes the water molecules over a much greater surface area, so the relative concentration is lower.
Answer
a) For the rock






b)
for maximum range




c) The value of θ is the same on every planet as g divides out.
Answer:
I hope this helps and I'm not to late
A way the balls behave the same way is by bouncing about 1 time after throwing the balls up. A way the balls act differently is the blue ball is bouncier than all the balls, the red ball bounces about 2 times before stopping, and the green ball doesn’t really bounce except for one time.
Explanation:
you also can use paraphrase to help you reword bye bye!!
<h3><u>Answer;</u></h3>
- A moving electric charge creates a magnetic field at all points in the surrounding region.
- An electric current in a conductor creates a magnetic field at all points in the surrounding region.
- A permanent magnet creates a magnetic field at all points in the surrounding region.
<h3><u>Explanation;</u></h3>
- A magnetic field can be created by running electricity through a wire. All magnetic fields are created by moving charged particles. it is important to also note that charged particles create magnetic fields only when they are moving.
- The strength of the magnetic field generated or created is proportional to the amount of current flowing through the wire. Thus, increasing the current increases the strength of the magnetic field.