Answer:
(a) if she increases the tension in the string is increased by 15%, the fundamental frequency will be increased to 740.6 Hz
(b) If she decrease the length of the the string by one-third the fundamental frequency will be increased to 840 Hz
Explanation:
(a) The fundamental, f₁, frequency is given as follows;
![f_1 = \dfrac{\sqrt{\dfrac{T}{\mu}} }{2 \cdot L}](https://tex.z-dn.net/?f=f_1%20%3D%20%5Cdfrac%7B%5Csqrt%7B%5Cdfrac%7BT%7D%7B%5Cmu%7D%7D%20%20%7D%7B2%20%5Ccdot%20L%7D)
Where;
T = The tension in the string
μ = The linear density of the string
L = The length of the string
f₁ = The fundamental frequency = 560 Hz
If the tension in the string is increased by 15%, we will have;
![f_{(1 \, new)} = \dfrac{\sqrt{\dfrac{T\times 1.15}{\mu}} }{2 \cdot L} = 1.3225 \times \dfrac{\sqrt{\dfrac{T}{\mu}} }{2 \cdot L} = 1.3225 \times f_1](https://tex.z-dn.net/?f=f_%7B%281%20%20%5C%2C%20new%29%7D%20%3D%20%5Cdfrac%7B%5Csqrt%7B%5Cdfrac%7BT%5Ctimes%201.15%7D%7B%5Cmu%7D%7D%20%20%7D%7B2%20%5Ccdot%20L%7D%20%3D%201.3225%20%5Ctimes%20%5Cdfrac%7B%5Csqrt%7B%5Cdfrac%7BT%7D%7B%5Cmu%7D%7D%20%20%7D%7B2%20%5Ccdot%20L%7D%20%20%3D%201.3225%20%5Ctimes%20f_1)
![f_{(1 \, new)} = 1.3225 \times f_1 = (1 + 0.3225) \times f_1](https://tex.z-dn.net/?f=f_%7B%281%20%20%5C%2C%20new%29%7D%20%3D%201.3225%20%5Ctimes%20f_1%20%3D%20%281%20%2B%200.3225%29%20%5Ctimes%20f_1)
![f_{(1 \, new)} = 1.3225 \times f_1 =\dfrac{132.25}{100} \times 560 \ Hz = 740.6 \ Hz](https://tex.z-dn.net/?f=f_%7B%281%20%20%5C%2C%20new%29%7D%20%3D%201.3225%20%5Ctimes%20f_1%20%3D%5Cdfrac%7B132.25%7D%7B100%7D%20%5Ctimes%20560%20%5C%20Hz%20%20%3D%20740.6%20%5C%20%20Hz)
Therefore, if the tension in the string is increased by 15%, the fundamental frequency will be increased by a fraction of 0.3225 or 32.25% to 740.6 Hz
(b) When the string length is decreased by one-third, we have;
The new length of the string,
= 2/3·L
The value of the fundamental frequency will then be given as follows;
![f_{(1 \, new)} = \dfrac{\sqrt{\dfrac{T}{\mu}} }{2 \times \dfrac{2 \times L}{3} } =\dfrac{3}{2} \times \dfrac{\sqrt{\dfrac{T}{\mu}} }{2 \cdot L} = \dfrac{3}{2} \times 560 \ Hz = 840 \ Hz](https://tex.z-dn.net/?f=f_%7B%281%20%20%5C%2C%20new%29%7D%20%3D%20%20%5Cdfrac%7B%5Csqrt%7B%5Cdfrac%7BT%7D%7B%5Cmu%7D%7D%20%20%7D%7B2%20%5Ctimes%20%5Cdfrac%7B2%20%5Ctimes%20L%7D%7B3%7D%20%7D%20%20%3D%5Cdfrac%7B3%7D%7B2%7D%20%5Ctimes%20%5Cdfrac%7B%5Csqrt%7B%5Cdfrac%7BT%7D%7B%5Cmu%7D%7D%20%20%7D%7B2%20%5Ccdot%20L%7D%20%3D%20%5Cdfrac%7B3%7D%7B2%7D%20%5Ctimes%20560%20%5C%20Hz%20%3D%20%20840%20%5C%20Hz)
When the string length is reduced by one-third, the fundamental frequency increases to one-half or 50% to 840 Hz.