1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shtirlitz [24]
3 years ago
5

A hockey puck slides off the edge of a platform with an initial velocity of 20 m/s horizontally. The height of the platform abov

e the ground is 2.0 m. What is the magnitude of the velocity of the puck just before it touches the ground
Physics
2 answers:
iren [92.7K]3 years ago
7 0

Answer:

V = 20.96 m/s

The magnitude of the velocity of the puck just before it touches the ground is 20.96 m/s

Explanation:

For the vertical component of velocity;

Using the equation of motion;

vᵥ^2 = u ^2 + 2as

Where;

vᵥ = final vertical speed

u = initial vertical speed = 0

(The puck only have horizontal speed.)

a = g =acceleration due to gravity = 9.8m/s^2

s = vertical distance covered = 2.0m

initial horizontal speed = 20 m/s

The equation becomes;

vᵥ^2 = u ^2 + 2gs

Substituting the given values, we have;

vᵥ^2 = 0 + 2(9.8×2)

vᵥ^2 = 39.2

vᵥ = √39.2

vᵥ = 6.26 m/s

For the horizontal component of velocity;

Given that effect of the air resistance is negligible, then the final horizontal speed equals the initial horizontal speed since there is no acceleration.

vₕ = uₕ = 20 m/s

The resultant magnitude of velocity can be derived by;

V = √(vₕ² + vᵥ²)

V = √(20² + 6.26²)

V = 20.96 m/s

The magnitude of the velocity of the puck just before it touches the ground is 20.96 m/s

Rina8888 [55]3 years ago
4 0

Answer:

20.96 m/s

Explanation:

Using the equations of motion

y = uᵧt + gt²/2

Since the puck slides off horizontally,

uᵧ = vertical component of the initial velocity of the puck = 0 m/s

y = vertical height of the platform = 2 m

g = 9.8 m/s²

t = time of flight of the puck = ?

2 = (0)(t) + 9.8 t²/2

4.9t² = 2

t = 0.639 s

For the horizontal component of the motion

x = uₓt + gt²/2

x = horizontal distance covered by the puck

uₓ = horizontal component of the initial velocity = 20 m/s

g = 0 m/s² as there's no acceleration component in the x-direction

t = 0.639 s

x = (20 × 0.639) + (0 × 0.639²/2) = 12.78 m

For the final velocity, we'll calculate the horizontal and vertical components

vₓ² = uₓ² + 2gx

g = 0 m/s²

vₓ = uₓ = 20 m/s

Vertical component

vᵧ² = uᵧ² + 2gy

vᵧ² = 0 + 2×9.8×2

vᵧ = 6.26 m/s

vₓ = 20 m/s, vᵧ = 6.26 m/s

Magnitude of the velocity = √(20² + 6.26²) = 20.96 m/s

You might be interested in
The cardiovascular system consists of
guapka [62]
Consists of A. good luck
3 0
3 years ago
Light of wavelength 400 nm is incident on a single slit of width 15 microns. If a screen is placed 2.5 m from the slit. How far
olganol [36]

Answer:

0.0667 m

Explanation:

λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m

D = screen distance = 2.5 m

d = slit width = 15 x 10⁻⁶ m

n = order = 1

θ = angle = ?

Using the equation

d Sinθ = n λ

(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)

Sinθ = 26.67 x 10⁻³

y = position of first minimum

Using the equation for small angles

tanθ = Sinθ = y/D

26.67 x 10⁻³ = y/2.5

y = 0.0667 m

5 0
3 years ago
A rock is thrown off a 50.0 m high cliff. How fast must the rock leave the cliff top to land on level ground below, 90 m from th
blagie [28]

Answer:

The rock must leave the cliff at a velocity of 28.2 m/s

Explanation:

The position vector of the rock at a time t can be calculated using the following equation:

r = (x0 + v0x · t, y0 + 1/2 · g · t²)

Where:

r = position vector at time t.

x0 = initial horizontal position.

v0x = initial horizontal velocity.

t = time.

g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).

Please, see the attached figure for a graphical description of the problem. Notice that the origin of the frame of reference is located at the edge of the cliff so that x0 and y0 = 0.

When the rock reaches the ground, the position vector will be (see r1 in the figure):

r1 = (90 m, -50 m)

Then, using the equation of the vector position written above:

90 m = x0 + v0x · t

-50 m = y0 + 1/2 · g · t²

Since x0 and y0 = 0:

90 m = v0x · t

-50 m = 1/2 · g · t²

Let´s use the equation of the y-component of the vector r1 to find the time it takes the rock to reach the ground and with that time we can calculate v0x:

-50 m = 1/2 · g · t²

-50 m = -1/2 · 9.81 m/s² · t²

-50 m / -1/2 · 9.81 m/s² = t²

t = 3.19 s

Now, using the equation of the x-component of r1:

90 m = v0x · t

90 m = v0x · 3.19 s

v0x = 90 m / 3.19 s

v0x = 28.2 m/s

8 0
3 years ago
What is true for solar, wind, and geothermal energy?
miss Akunina [59]
In the question "What is true for solar, wind, and geothermal energy?" The correct answer is that they are all renewable energy.
Solar energy is energy that comes from the heat from the sun.
Wind energy is the energy that is generated from the wind.
Geothermal energy energy is the energy that comes from the heat from the earth.
4 0
3 years ago
A tire has a pressure of 325 kPa at 10°C.
musickatia [10]
5 times that of initial pressure i.e 1625 kpa
6 0
2 years ago
Read 2 more answers
Other questions:
  • 2. Moving ocean water exerts a force of 375 N on a boat, causing the boat to move a distance of 34.7 m in 8.34 s. What power doe
    5·1 answer
  • A car traveling with constant speed travels 150 km in 7200 s. What is the speed of the car?
    15·2 answers
  • A purse at radius 2.0 m and a wallet at radius 2.3 m travel in uniform circular motion on the floor of a merry-go-round as the r
    10·1 answer
  • Consider an airplane modeled after the twin-engine Beechcraft Queen Air executive transport. The airplane has the following char
    8·1 answer
  • The lithosphere is made up of the ____
    9·2 answers
  • Two small objects each with a net charge of +Q exert a force of magnitude F on each other. We replace one of the objects with an
    8·1 answer
  • A car accelerates from rest at a constant rate of 1.6
    7·1 answer
  • ¿Cuál es la diferencia entre un trauma físico y un trauma psicológico?
    12·1 answer
  • Which is an example of sliding friction? (1 point)
    9·2 answers
  • Question 3
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!