1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivanzaharov [21]
2 years ago
6

Two identical bullets are used. Both are released at the same height - one fired out of a gun, the other is dropped. Ignoring ai

r resistance, which hits the
ground first?
Physics
1 answer:
irina [24]2 years ago
8 0

Answer:

Both bullets will hit the ground at the same time.

Explanation:

Let's only analyze the vertical problem.

Any object that is not in the floor or resting in some site is being affected by the gravitational force (remember that we are ignoring air resistance)

Then the acceleration of this object will be equal to the gravitational acceleration:

a = -9.8m/s^2

Where the minus sign is because this acceleration goes down.

To get the velocity equation we need to integrate over time, we will get:

v(t) = ( -9.8m/s^2)*t + v0

Where v0 is the initial vertical velocity.

To get the position equation we need to integrate over time again, we will get:

p(t) = (1/2)*( -9.8m/s^2)*t^2 + v0*t + H

Where H is the initial height.

p(t) = (-4.9 m/s^2)*t^2 + v0*t + H

The object will hit the ground when p(t) = 0

Then we need to solve for t the next equation:

(-4.9 m/s^2)*t^2 + v0*t + H = 0

Notice that the only things we need to know are:

H = initial height (we know that is the same for both bullets)

v0 = initial vertical velocity (also is the same for both bullets)

Notice that the horizontal velocity does not affect this equation, then we will get the same value of t for the dropped bullet and for the fired bullet.

This means that both bullets will hit the ground at the same time.

You might be interested in
The outer layer of cable on a cable reel is 16.2 cm from the center of the reel. The reel is initially stationary and can rotate
ahrayia [7]

Answer:

B. w=12.68rad/s

C. α=3.52rad/s^2

Explanation:

B)

We can solve this problem by taking into account that (as in the uniformly accelerated motion)

\theta=\omega_{0}t+\frac{1}{2}\alpha t^{2}\\\theta = \frac{s}{r}      ( 1 )

where w0 is the initial angular speed, α is the angular acceleration, s is the arc length and r is the radius.

In this case s=3.7m, r=16.2cm=0.162m, t=3.6s and w0=0. Hence, by using the equations (1) we have

\theta=\frac{3.7m}{0.162m}=22.83rad

22.83rad=\frac{1}{2}\alpha (3.6s)^2\\\\\alpha=2\frac{(22.83rad)}{3.6^2s}=3.52\frac{rad}{s^2}

to calculate the angular speed w we can use\alpha=\frac{\omega _{f}-\omega _{i}}{t _{f}-t _{i}}\\\\\omega_{f}=\alpha t_{f}=(3.52\frac{rad}{s^2})(3.6)=12.68\frac{rad}{s}

Thus, wf=12.68rad/s

C) We can use our result in B)

\alpha=3.52\frac{rad}{s^2}

I hope this is useful for you

regards

3 0
3 years ago
Read 2 more answers
Who much force is needed to accelerate a 68 kilogram-skier at a Rate of 1.2 m/sec
liberstina [14]
If F =m*a
and the question says how much force the s needed to accelerate a 68kg skier to a rate of 1.2ms^-2
Then F = 68*1.2
7 0
3 years ago
Do any of the atom diagrams below represent atoms of the same element?
sergeinik [125]

Atom A and atom C are the same element.

6 0
2 years ago
A 975-kg sports car (including driver) crosses the rounded top of a hill at determine (a) the normal force exerted by the road o
iVinArrow [24]
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill: v=15 m/s
- radius of the hill: r=100 m

Solution:

(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car W=mg (downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force, m \frac{v^2}{r}, so we can write:
mg-N=m \frac{v^2}{r} (1)
By rearranging the equation and substituting the numbers, we find N:
N=mg-m \frac{v^2}{r}=(975 kg)(9.81 m/s^2)-(975 kg) \frac{(15 m/s)^2}{100 m}=7371 N

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:
N=mg-m \frac{v^2}{r}=(62 kg)(9.81 m/s^2)-(62 kg) \frac{(15 m/s)^2}{100 m}=469 N

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:
mg=m \frac{v^2}{r}
from which we find
v= \sqrt{gr}= \sqrt{(9.81 m/s^2)(100 m)}=31.3 m/s
7 0
3 years ago
Which of the following statements is true about a current-carrying wire in a magnetic field? A. Reversing the current direction
Zielflug [23.3K]
B. Reversing the current direction will cause the force deflecting the wire to be perpendicular to the magnetic field but in the opposite direction.
6 0
3 years ago
Other questions:
  • Tony is driving a truck of mass 2.00 × 103 kilograms to the west with a velocity of 14.0 meters/second. He collides with a car o
    9·2 answers
  • Brad is working on a speed problem in physics class. The problem tells him that a girl runs from her house to the park 0.05 km a
    10·2 answers
  • Which multiplier does the word kilo represent? A. 100 B. 1,000 C. `(1)/(100)` D. `(1)/(10)`
    10·1 answer
  • Atmospheric pressure is due to the weight _______
    10·1 answer
  • A physician has a patient that he believes has had foul play. What type of autopsy would the physician request?
    9·1 answer
  • A battery with e.m.f 12v and the internal resistance 0.5ohms is connected to an electric bulb of resistance 2 ohms. Calculate th
    5·1 answer
  • Prove that..<br>please help<br>​
    7·1 answer
  • Describe the general characteristics of the nearest stars. (Size, luminosity, color, etc., do not include specific stars)
    11·1 answer
  • Rubber is a type of _________.<br> radiator<br> distributor<br> insulator<br> conductor
    11·2 answers
  • If a person displaces a mass of<br>60kg through 300 metres in 1<br>Minute, what is the power?<br>?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!