1 nanowatt = 1 nanojoule/sec
1 watt = 1 joule/sec
10 watts = 10 joules/sec
100 watts = 100 joules/sec
742.914 watts = 742.914 joules/sec
1,000 watts = 1,000 joules/sec
10,000 watts = 10,000 joules/sec
100,000 watts = 100,000 joules/sec
1 megawatt = 1 megajoule/sec
1 gigawatt = 1 gigajoule/sec
1 petawatt = 1 petajoule/sec
We don't care what frequency the transmission is using,
or who their morning DJ is.
Answer:
The cup with 0.5L
Explanation:
To know what amount of water you take into account the specific heat of the water. The specific heat of water is:

Thus, 4186 J of energy are needed to icrease the temperature of 1 kg water in 1°C. Then, more grams of water will need more energy.
You have that one cup has 0.5 L and the other one has 750mL = 0.75L
The second cup of water will need more heat because the amount of water contained in the second cup is greater than in the first cup with 0.5L
<span>computing or networking is a distributed application architecture that partitions tasks or work loads between peers. Peers are equally privileged, equipotent participants in the application. They are said to form a peer-to-peer network of nodes.</span>
Answer:

Explanation:
The ball will rise decreasing its speed until it reaches the highest point where its speed will be zero. From this point the tennis ball will begin to fall again, in the free fall the tennis ball will gain speed but now in the opposite direction. When it returns to the same point where it was launched, its speed will be the same as the one that was launched but with the opposite sign.

We can check this using the equation:

where 
ang h is the height, but because the ball returns to the same point where it started, h =0
then


the initial and final velocity will be the same in number, but we know that the ball is going in the opposite direction, so the final velocity must have the opposite sign from the initial velocity
so if
,

Answer:
1. 18.25 m/s
2. 0 m/s
Explanation:
1.So the centripetal acceleration of the ball at this lowest point must be, taking gravity into account

The speed at this point would then be


2. Similarly, if T = mg, then the centripetal acceleration must be

As the ball has no centripetal acceleration, its speed must also be 0 as well.