Answer:
Acceleration of gravity=
Explanation:
Newton's Second Law-acceleration is proportional to the net force acting on an object.
All objects usually free fall at the same acceleration of -this regardless of their mass. This acceleration is known as acceleration of gravity.
Answer:
The correct option is (b).
Explanation:
We need to find the work done to increase the speed of a 1 kg toy car by 5 m/s.
We know that, the work done is equal to the kinetic energy of an object i.e.
So, 12.5 J of work is done to increase the speed of a 1.0 kg toy car by 5.0 m/s.
Sorry bro I just need points for my calculus exam
Answer:
2.47 m
Explanation:
Let's calculate first the time it takes for the ball to cover the horizontal distance that separates the starting point from the crossbar of d = 52 m.
The horizontal velocity of the ball is constant:
and the time taken to cover the horizontal distance d is
So this is the time the ball takes to reach the horizontal position of the crossbar.
The vertical position of the ball at time t is given by
where
is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
And substituting t = 2.56 s, we find the vertical position of the ball when it is above the crossbar:
The height of the crossbar is h = 3.05 m, so the ball passes
above the crossbar.
Answer:
An accelerometer is a tool that measures proper acceleration.[1] Proper acceleration is the acceleration (the rate of change of velocity) of a body in its own instantaneous rest frame;[2] this is different from coordinate acceleration, which is acceleration in a fixed coordinate system. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity, straight upwards[3] (by definition) of g ≈ 9.81 m/s2. By contrast, accelerometers in free fall (falling toward the center of the Earth at a rate of about 9.81 m/s2) will measure zero.
Accelerometers have many uses in industry and science. Highly sensitive accelerometers are used in inertial navigation systems for aircraft and missiles. Vibration in rotating machines is monitored by accelerometers. They are used in tablet computers and digital cameras so that images on screens are always displayed upright. In unmanned aerial vehicles, accelerometers help to stabilise flight.
When two or more accelerometers are coordinated with one another, they can measure differences in proper acceleration, particularly gravity, over their separation in space—that is, the gradient of the gravitational field. Gravity gradiometry is useful because absolute gravity is a weak effect and depends on the local density of the Earth, which is quite variable.
Single- and multi-axis accelerometers can detect both the magnitude and the direction of the proper acceleration, as a vector quantity, and can be used to sense orientation (because the direction of weight changes), coordinate acceleration, vibration, shock, and falling in a resistive medium (a case in which the proper acceleration changes, increasing from zero). Micromachined microelectromechanical systems (MEMS) accelerometers are increasingly present in portable electronic devices and video-game controllers, to detect changes in the positions of these devices.
Explanation:
hope this helps !!!!