I think it comes from the stores energy from the gravity
Answer:
<em>The angle introduces an error on the mesure of the weight</em>
Explanation:
<u><em>Weight and Normal Forces</em></u>
When an object is resting on a horizontal surface, its weight is directed downwards and the normal force has the same magnitude and opposite direction, i.e. directed upwards. When some angle α exists between the surface and the horizontal plane, the scale keeps 'feeling' the Normal force, but it's not equal to the weight anymore, but to the perpendicular component of the weight to the surface where the scale is placed. It can be found that the component of the weight is m.g.cosα
If, for example
, the real measure is

That is, 98.5% of the correct weight. So it's important to measure weight on horizontal surfaces
The full question is:
On a keyboard, you strike middle C, whose frequency is 256 Hz. What is the period of one vibration of this tone?
The period of a vibration is the time it takes for the particle to make one full oscillation. Frequency is by definition number of full oscillations per unit of time.
When the frequency is expressed in Hz that unit of time is one second.
So there is the following relation between frequency and period:

When we plug in the numbers we get:
Explanation:
An Example of push as a force would be to push on a swing. The force moves the swing in a particular direction and the harder that you push the further the swing will go.
An example of pull as a force would be opening a door. ...
An example of pressure as a force is when you push down on a pile of grapes. is this what you mean
Answer:
i. Cv =3R/2
ii. Cp = 5R/2
Explanation:
i. Cv = Molar heat capacity at constant volume
Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT
Differentiating U with respect to T, we have
= d(3/2RT)/dT
= 3R/2
ii. Cp - Molar heat capacity at constant pressure
Cp = Cv + R
substituting Cv into the equation, we have
Cp = 3R/2 + R
taking L.C.M
Cp = (3R + 2R)/2
Cp = 5R/2