Answer:
W = 3/2 n (T₁- T₂)
Explanation:
Let's use the first law of thermodynamics
ΔE = Q + W
in this case the cylinder is insulated, so there is no heat transfer
ΔE = W
internal energy can be related to the change in temperature
ΔE = 3/2 n K ΔT
we substitute
3/2 n (T₂-T₁) = W
as the work is on the gas it is negative
W = 3/2 n (T₁- T₂)
In a projectile, the horizontal acceleration is zero. The velocity remains constant at all times. However, the <u>vertical acceleration</u> is -9.81m/s^2.
Hope this helps!
Answer: A satellite with a mass of 110 kg and a kinetic energy of 3.08×10^9 J must be moving at a speed of 7483 m/s.
Explanation: To find the answer we need to know about the kinetic energy of a body.
<h3>
How to solve the problem the equation of kinetic energy?</h3>
- We have the expression for kinetic energy of a body as,


- We have to find the speed of the satellite,

Thus, we can conclude that, the velocity of the satellite will be 7438m/s.
Learn more about Kinetic energy here:
brainly.com/question/28105739
#SPJ4
A speed does not involve the element of direction.