Answer:
2/5
Step-by-step explanation:
Add up everything which would be 15, then put the number of ovens their was as the numerator. Then you'd have 6/15 so then just simplify!
<h2>
Answer:</h2>
The conclusion of the given conditional statement is:
<h2>
Step-by-step explanation:</h2>
We know that a conditional statement is a statement in which with the help of some valid hypothesis we can reach to a valid conclusion.
The conditional statement is written in the form:
If p then q
where p is the hypothesis of the statement
and q is the conclusion of the statement.
We are given a conditional statement as:
If you live in Phoenix, then you live in Arizona.
Here
Hypothesis-- You live in Phoenix
and Conclusion-- You live in Arizona
We have the coordinates
J (2,5)
K (4,19)
Since we are to find the point that partitions the line segment into 3:2 ratio, we have 5 equal parts of the line segment. So,
Get the horizontal distance:
4 - 2 = 2
Divide by 5
2/5
Multiply by 3
2/5 x 3 = 1.2
Add this to the x coordinate of J
2 + 1.2 = 2.2
Get the vertical distance:
19 - 5 = 14
Divide by 5
14/5
Multiply by 3
14/5 x 3 = 8.4
Add this to the y coordinate of J
5 + 8.4 = 13.4
The coordinates of the point is
(2.2,13.4)
Take the sequence in 1a
The 10th term is 31
The 20th is 61
If you wanted to find these by continuing the series, you'd have to add 3 to the last number in the series, then 3 more, then 3 more, until you reach the 20th term. By this point, you will have added 3 to the first term 19 times. That's where the formula comes from. So here,
a = 4, the first term
n = 20, the number of the term we need
d = 3, how much we're adding each time between one term and the next
Then, to get the 20th term,
4 + (20 - 1) • 3 = 4 + (19 • 3) = 4 + 57 = 61
Answers
The 10th and 20th terms of each sequences are
a. 31; 61
b. 48; 98
c. 47; 97
(in <em>c</em>, you're adding the same <em>d</em> as in the sequence above, but your first term is one unit less)
d. -25; -75
(same thing as before, but now, <em>d</em> is negative)
e. 11.5; 16.5
(with <em>d</em>=1/2 or 0.5)
f. 6+1/2; 8+1/2
Use these to check your answers after applying the formula, but know that I calculated on the fly and didn't check these.