Remember that the vertex form of a parabola or quadratic equation is:
y=a(x-h)^2+k, where (h,k) is the "vertex" which is the maximum or minimum point of the parabola (and a is half the acceleration of the of the function, but that is maybe too much :P)
In this case we are given that the vertex is (1,1) so we have:
y=a(x-1)^2+1, and then we are told that there is a point (0,-3) so we can say:
-3=a(0-1)^2+1
-3=a+1
-4=a so our complete equation in vertex form is:
y=-4(x-1)^2+1
Now you wish to know where the x-intercepts are. x-intercepts are when the graph touches the x-axis, ie, when y=0 so
0=-4(x-1)^2+1 add 4(x-1)^2 to both sides
4(x-1)^2=1 divide both sides by 4
(x-1)^2=1/4 take the square root of both sides
x-1=±√(1/4) which is equal to
x-1=±1/2 add 1 to both sides
x=1±1/2
So x=0.5 and 1.5, thus the x-intercept points are:
(0.5, 0) and (1.5, 0) or if you like fractions:
(1/2, 0) and (3/2, 0) :P
<span>N/-1.5=-1.2
</span>
<span>-1.5*N/-1.5=-1.2*-1.5
n = 1.8
</span>
Answer:
k = -4 or 2
Step-by-step explanation:
For the lines to be parallel, the lines would need to be the same slope. This means to find the slope of each we would take the difference of the rise over the run.

and

To find K, set them equal.

Factor the quadratic and solve for K.

k+4=0 so k=-4
k-2=0 so k=2