The alveoli are surrounded<span> by tiny blood vessels, called capillaries. The </span>alveoli<span> and capillaries both have very thin walls, which allow the oxygen to pass from the </span>alveoli<span>to the blood. The capillaries then connect to larger blood vessels, called veins, which bring the oxygenated blood from the lungs to the heart.</span>
Answer:
Explanation:
What we need to do here is to determine the ratios by using the Rydberg equation starting with the transition to n1 = 1, 2,3, etc and see which one fits the data. Remember the question states that they are series and the wavelengths will be for increasing energy levels.
1/λ = Rh x ( 1/n₁² - 1/n₂²)
Lyman series ( n₁=1 and n₂= 2,3 etc) for the first two lines, the ratios will be:
1/λ₁ /1/λ₂ =(1/1 -1/ 2²) / (1/1 -1/ 3²) ⇒ 0.84 ≠ 0.74 (the first ratio)
For Balmer series n₁ = 2 and n₂ = 3,4,5, etc
1/λ₁ /1/λ₂ =(1/4 -1/3²) / (1/4 -1/4²) ⇒ 0.741 = 0.741 (match!)
Lets use the third line to check our answer:
1/λ₁ /1/λ₂ =(1/4 -1/3²) / (1/4 -1/5²) = 0.66
Answer:
5.12x10¹¹ millimeters
Explanation:
Milli is a prefix used in science and engineering to decribe the number as the exponent x10⁻³. In the prefix kilo, the number is at the exponent x10³.
5.12x10⁵ kilometers are:
5.12x10⁵ kilometers * (1000m / 1km) = 5.12x10⁸ meters
5.12x10² meters * (1m / 1000millimeters) = 5.12x10¹¹ millimeters
Answer:
0.48
Explanation:
all you need is to decide 12% with 100% then you multiply it by 4L.
Answer: 2.7 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Given: mass of sodium hydrogen carbonate = 3.4 g
mass of acetic acid = 10.9 g
Mass of reactants = mass of sodium hydrogen carbonate+ mass of acetic acid = 3.4 + 10.9= 14.3 g
Mass of reactants = Mass of products in reaction vessel + mass of carbon dioxide (as it escapes)
Mass of carbon dioxide = 14.3 - 11.6 =2.7 g
Thus the mass of carbon dioxide released during the reaction is 2.7 grams.