Answer:
pKa of the histidine = 9.67
Explanation:
The relation between standard Gibbs energy and equilibrium constant is shown below as:
R is Gas constant having value = 0.008314 kJ / K mol
Given temperature, T = 293 K
Given,
So, Applying in the equation as:-
Thus,
![\frac{[His]}{[His+]}=e^{\frac{15}{-0.008314\times 293}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHis%5D%7D%7B%5BHis%2B%5D%7D%3De%5E%7B%5Cfrac%7B15%7D%7B-0.008314%5Ctimes%20293%7D)
![\frac{[His]}{[His+]}=0.00211](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHis%5D%7D%7B%5BHis%2B%5D%7D%3D0.00211)
Also, considering:-
![pH=pKa+log\frac{[His]}{[His+]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5BHis%5D%7D%7B%5BHis%2B%5D%7D)
Given that:- pH = 7.0
So, 
<u>pKa of the histidine = 9.67</u>
Answer:
I think the answer is option B
Answer:
no it will have no charge...it would be electrically neutral! because the number of protons and electrons are equal!