Answer: The correct option is option E (the Sun is seen blocking different constellations in the course of a year.
Explanation:
The earth, which is one of the planets of the solar system that supports life, is shperical in shape. The spherical ( round) shape of the earth is marked by the intervening highlands and oceans on its surface.
Evidence to show that the earth is shperical are:
--> The Lunar eclipse: During an eclipse of the Moon, the shadow of the Earth is always seen to be round.
--> Ships Visibility: When ships travel a large distance away, we see their hulls disappear first and their masts disappear last.
-->Altitude of Polaris (North Star): The height of the North Star changes as we travel to different latitudes. That is ,increases as you move toward the North pole, or decreases as you move toward the equator.
--> Aerial photographs: Photographs of the Earth from space always show a round body.
The statement that doesn't prove that the earth is spherical in shape is (the Sun is seen blocking different constellations in the course of a year). The sun is seen in front of stars blocking different constellation in a year because the earth orbits round the sun in a year and not that it is shperical in shape.
Answer:
Time = 80.91 seconds
Explanation:
Given the following data;
Velocity = 5.50 m/s.
Distance = 445 meters
To find the time;
Velocity can be defined as the rate of change in displacement (distance) with time. Velocity is a vector quantity and as such it has both magnitude and direction.
Mathematically, velocity is given by the equation;

Substituting into the formula, we have;
5.5 = 445/time
Time = 445/5.5
Time = 80.91 seconds
Answer:
24cm/s
Explanation:
A=L*w
A'=L'*w'
L=13
w=5
L'=4
w'=6
A=?
A'=?
A=L*w
A=13*5
A=65
A'=L'*w'
A'=4*6
A'=24
*the given lengths are just to throw you off*
Answer:
0.438kg/ms-¹
Explanation:
Momentum, denoted by p, can be calculated by using the formula;
p = mv
Where;
m = mass (kg)
v = velocity (m/s)
Momentum (p) of bird = 0.216 kg × 5.87 m/s = 1.268kg/ms-¹
Momentum (p) of crawling baby = 7.29 kg kg × 0.234 m/s = 1.706kg/ms-¹
Having calculated the momentum of the bird to be 1.268kg/ms-¹, and the momentum of the baby to be 1.706kg/ms-¹, the difference in momentum between the flying bird and the crawling baby is:
{1.706kg/ms-¹ - 1.268kg/ms-¹} = 0.438kg/ms-¹
Answer:
slow revolution and fast rotation
Explanation: