The solution for this problem is:
If they feel 50% of their weight that means that the
centripetal force is also 50% of their weight 1g - 0.5g = 0.5g
Then 0.5* 9.8m/s² * 18m = 88.2 would be v²
Then get the square root, the answer would be:
and v = 9.391 m/s is the answer.
Answer:
c is the one that makes the most sense
Explanation:
Answer:
Velocity = 0.309 m/s
Along negative x axis
Explanation:
A pulse moving to the right along the x axis is represented by the wave function
y(x,t) = 2/ (x - 3t)² + 1
At t =0
y(x,0) = 2/ ((x - 3(0))² + 1)
=2 / (x² + 1)
At t = 1
y(x,t) = 2/ ((x - 3(1))² + 1)
= 2 /(( x - 3)² + 1)
At t = 2
y(x,t) = 2/ ((x - 3(2))² + 1)
= 2 /(( x - 6)² + 1)
For the pulse with expression y(x,t) = 4.5
²
The Velocity is
V = 2.7 / 8.73
= 0.309 m/s
Answer:
<h3>2,321.62Joules</h3>
Explanation:
The formula for calculating workdone is expressed as;
Workdone = Force * Distance
Get the force
F = nR
n is the coefficient of friction = 0.5
R is the reaction = mg
R = 46 ( 9.8)
R = 450.8N
F = 0.5 * 450.8
F = 225.4N
Distance = 10.3m
Get the workdone
Workdone = 225.4 * 10.3
Workdone = 2,321.62Joules
<em>Hence the amount of work done is 2,321.62Joules</em>
Answer:
a. Volts = current x resistance
Explanation:
Ohm's law states that at constant temperature, the current flowing in an electrical circuit is directly proportional to the voltage applied across the two points and inversely proportional to the resistance in the electrical circuit.
Mathematically, Ohm's law is given by the formula;
Where;
V represents voltage measured in voltage.
I represents current measured in amperes.
R represents resistance measured in ohms.
Hence, Ohm's law gives the relationship between voltage, current and resistance of an electric circuit.