Answer:
Terminal speed, v = 6901.07 m/s
Explanation:
It is given that,
Mass of the horizontal bar, m = 30 g = 0.03 kg
Length of the bar, l = 13 cm = 0.13 m
Magnetic field, 
Resistance, R = 1.2 ohms
We need to find the terminal speed oat which the bar falls. When terminal speed is reached,
Force of gravity = magnetic force
..................(1)
i is the current flowing
l is the length of the rod
Due to the motion in rods, an emf is induced in the coil which is given by :
, v is the speed of the bar


Equation (1) becomes,



v = 6901.07 m/s
So, the terminal speed at which the bar falls is 6901.07 m/s. Hence, this is the required solution.
Motion because the motion is the range
Composition Is the property
Answer:
its surface temperature = 54.84 ° C
Explanation:
The density of aluminium
= 2700 kg/m ³
Heat capacity
= 897 J/Kg.K
radius of the sphere (r) = 0.081029 m
= 25 °C
= 124.978 °C
time (t) = 767.276 s
Using the formula :

where.

Replacing our values ;we have:








T ≅ 54.84 ° C
Therefore, its surface temperature = 54.84 ° C
Answer:
2 seconds
Explanation:
if a ball travels 1/2 meter per second, and there's 2 halfs in a whole, 1/2 meter per second x 2 halfs in a whole meter is 2 seconds to travel a meter