<span>The three states of matter are the three distinct physical forms that matter can take in most environments: solid, liquid, and gas. In extreme environments, other states may be present, such as plasma, Bose-Einstein condensates, and neutron stars. Further states, such as quark-gluon plasmas, are also believed to be possible. Much of the atomic matter of the universe is hot plasma in the form of rarefied interstellar medium and dense stars.</span>
<h3>Answer;</h3>
- <em>The spheres develop opposite charges.
</em>
- <em>Electrons move from Sphere A to Sphere B.
</em>
- <em>The spheres are charged through induction.</em>
<h3><u>Explanation;</u></h3>
- <u><em>When a negatively charged rod is placed near two neutral metal spheres, the spheres will develop opposite charges, because the neutral metal spheres have both negative and positive charges. </em></u>From the basic law of electrostatics unlike charges attracts and like charges repel.
- Thus, <em><u>the sphere will develop opposite charges, electrons will move from Sphere A to sphere B,</u></em> hence we say that the spheres will be charged by induction such that sphere A will acquire a positive charge while sphere B will acquire negative charge.
Answer:
I would say both
Explanation:
Each silicon atom has four valence electrons which are shared, forming covalent bonds with the four surrounding Si atoms.
Carbon contains four electrons in its outer shell. Therefore, it can form four covalent bonds with other atoms or molecules. The simplest organic carbon molecule is methane (CH4), in which four hydrogen atoms bind to a carbon atom (Figure 1).