Answer:
2.41 L
Explanation:
We can solve the problem by using the ideal gas equation, which can be rewritten as:

where we have:
(initial pressure is stp pressure)
is the initial volume
is the initial temperature (stp temperature)
is the final pressure
is the final volume
is the final temperature
By substituting the numbers inside the formula and solving for V2, we find the final volume:

which corresponds to 2.41 L.
Answer:
The new kinetic energy would be 16 times greater than before.
Explanation:
Kinetic energy is found using this formula:
- KE = 1/2mv²
- where KE = kinetic energy (J), m = mass (kg), and v = velocity (m/s)
We can see that kinetic energy is directly proportional to the square of the velocity, meaning that if the speed was increased by 4 times, then the kinetic energy would get increased by a factor of 16.
The velocity just before the ball hits the ground can be found by the equation:
Let's substitute h = 10 m and h = 40 m into this formula.
We can see that the velocity increases by a factor of 4 (10 m → 40 m).
Therefore, this means that the kinetic energy would also be increased by a factor of (4)² = 16. Thus, the answer is D) The new kinetic energy would be 16 times greater than before.