Answer:
1.69×10²⁹ molecules.
Explanation:
The following data were obtained from the question:
Mass of Ammonia (NH3) = 5.25 tons
Molecules of Ammonia (NH3) =.?
Next, we shall convert 5.25 tons to grams (g). This can be obtained as follow:
1 ton = 907184.74 g
Therefore,
5.25 ton = 5.25 ton × 907184.74 g / 1 ton
5.25 ton = 4762719.885 g
Therefore, 5.25 tons is equivalent to 4762719.885 g
Finally, we shall determine the number of molecules of ammonia, NH3 in 4762719.885 g. This can be obtained as follow:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ molecules. This implies that 1 mole of ammonia, NH3 also contains 6.02×10²³ molecules.
1 mole of ammonia, NH3 = 14 + (3x1) = 14 + 3 = 17 g
17 g of ammonia, NH3 contains 6.02×10²³ molecules.
Therefore, 4762719.885 g of ammonia, NH3 will contain = (4762719.885 × 6.02×10²³) / 17 = 1.69×10²⁹ molecules.
From the calculations made above,
5.25 tons (4762719.885 g) of ammonia, NH3 contains 1.69×10²⁹ molecules.
The formula for Cs and S is Cs₂S.
For Cs and S,
Ions formed will be Cs⁺ and S²⁻
As cesium belongs to group 1A and sulfur belongs to group 6A. Therefore, the condensed electronic configuration is -
For Cs is [Xe} 6s¹ and for S is [Ne] 3s²3p⁴.
Cs have 1 valence electron and S have 6 valence electrons.
Hence to attain a stable electronic configuration, both two Cs atoms lose one electron and form Cs⁺ and these two electrons will be accepted by one S atom to form S²⁻.
Therefore the formula for the compound is Cs₂S as Cs donate 1 electron and S will accept 2 electrons from Cs.
The formula is Cs₂S.
To learn more about electronic configuration, visit: brainly.com/question/15051483
#SPJ4
Answer:
D) burning a candle
Explanation
When burning a candle no new substance is form.
We have both physical and chemical change occuring.
Physical part: Melting of the solid wax and evaporation of the liquid forms the physical change.
Chemical part: burning of the wax vapour forms the chemical change.
Explanation:
Explanation:
yes, they are the same.
"Iron is a mineral that the body needs for growth and development. Your body uses iron to make hemoglobin, a protein in red blood cells that carries oxygen from the lungs to all parts of the body, and myoglobin, a protein that provides oxygen to muscles."
Fun fact:
At 4 grams per person, you'd need at least 2,352 completely drained donors to make a iron longsword out of blood.