Answer:
0.287 mole of PCl5.
Explanation:
We'll begin by calculating the number of mole in 51g of Cl2. This is illustrated below:
Molar mass of Cl2 = 2 x 35.5 = 71g/mol
Mass of Cl2 = 51g
Number of mole of Cl2 =..?
Mole = Mass /Molar Mass
Number of mole of Cl2 = 51/71 = 0.718 mole
Next, we shall write the balanced equation for the reaction. This is given below:
P4 + 10Cl2 → 4PCl5
Finally, we determine the number of mole of PCl5 produced from the reaction as follow:
From the balanced equation above,
10 moles of Cl2 reacted to produce 4 moles of PCl5.
Therefore, 0.718 mole of Cl2 will react to produce = (0.718 x 4)/10 = 0.287 mole of PCl5.
Therefore, 0.287 mole of PCl5 is produced from the reaction.
Answer:
the molecular formula of the compound is N2O4
Explanation:
- Find the empirical formula
mole of N present = mass of N divided by molar mass of N = 0.140/14 = 0.01 mole
mole of O present = mass of O divided by molar mass of O = 0.320/16 = 0.02 mole
Divide both by the smallest number of mole to determine the coefficient of each, the smallest number of mole is 0.01 thus:
quantity of N = 0.01/0.01 = 1
quantity of O = 0.02/0.01= 2
thus the empirical formula = NO2
- Now determine the molecular formula by finding the ratio of molecular formula and empirical formula
Molar mass of molecular formula = 92.02 amu = 92.02 g/mole
Molar mass of empirical formula NO2 = (14 + (16 x 2)) = 46 g/mole
the x factor = 92.02/46 = 2
Molecular formula = 2 x NO2 = N2O4
Answer:
(a) HCl
(b) HCl
(c) HCl
(d) HCl
Explanation:
<em>Given: </em>0.50 mol of CH₄ and 1.0 mol of HCl
Using stoichiometry we can calculate the answers to parts a, b, c, and d.
<h3>Part (a) </h3>
# of moles × Avogadro's number = # of atoms or molecules
Avogadro's number: 6.02 * 10²³
HCl has more atoms than CH₄.
<h3>Part (b) </h3>
This is calculated the same way as Part (a); HCl has more molecules than CH₄.
<h3>Part (c) </h3>
Molar mass of CH₄ = 16.04 g/mol
Molar mass of HCl = 36.458 g/mol
HCl has a greater mass than CH₄.
<h3>Part (d)</h3>
Assuming STP:
Molar volume of any gas at STP is 22.4 L/mol.
HCl has a greater volume than CH₄.
The correct answer will be b