Answer:
W = N!/(n0! * n1!)
Explanation:
Let n0 = number of particles in the lowest energy state
n1 = number of particles in the excited energy state.
Using this, we can say that N = n0 + n1
From this we can then express the weight, W of the close system by finding the factorials of each particles
W = N!/(n0! * n1!)
Hence, the weight W is expressed as W = N!/(n0! * n1!)
Answer:
The moment arm is 0.6 m
Explanation:
Given that,
First force 
Second force 
Distance r = 0.2 m
We need to calculate the moment arm
Using formula of torque

So, Here,

We know that,
The torque is the product of the force and distance.
Put the value of torque in the equation


Where,
=First force
=First force
=Second force
= distance
Put the value into the formula


Hence, The moment arm is 0.6 m
Answer:
The rate of change of the distance between the helicopter and yourself (in ft/s) after 5 s is
ft/ sec
Explanation:
Given:
h(t) = 25 ft/sec
x(t) = 10 ft/ sec
h(5) = 25 ft/sec . 5 = 125 ft
x(5) = 10 ft/sec . 5 = 50 ft
Now we can calculate the distance between the person and the helicopter by using the Pythagorean theorem

Lets find the derivative of distance with respect to time

Substituting the values of h(t) and x(t) and simplifying we get,



=
=
ft / sec
Answer:
A) Earth and the other inner planets have higher average surface temperatures than the outer planets.
Explanation:
the earth and the other inner planets have higher average surface temperatures than the outer planets.
The reason for this response is due to the distance between the sun and the respective planet, the source of energy generation is the sun and the only way in which the temperature increase of each planet is guaranteed is by radiation, the further away a planet is from its star, its temperature will decrease. Although it is also important to highlight the atmospheric composition of the planet if this planet in its stratosphere has high density clouds that do not allow the entry of solar radiation, the temperature of the planet's surface will not increase, independent of the distance from the sun, but these are more complex cases where specialists in that area enter to perform a study in detail.
Answer:
7.8 m/s
Explanation:
Here object is falling with a gravitational acceleration there for we can take acceleration = 10 m/ s² and its constant through out the motion there for we can use motion equation
V = U + at
V - Final velocity
U - Initial velocity
a - acceleration
t - time
V=U+at
107.8=U + 10×10
= 7.8 m/s