The net force is negative, and there is a change in motion.
Answer:
V = 4.48m/s a = 1.57m/s²
Explanation:
ω₀ = 16rad/s
α₀ = 5.6rad/s²
r = 280mm = 0.28m
a = ?
v = ?
Angular velocity (ω₀) = velocity of acceleration / length of path
ω₀ = v / r
V = ω₀ * r
V = 16 * 0.28
V = 4.48m/s
Acceleration = ?
Angular acceleration α₀ = angular velocity (ω) / time take (t)
α₀ = ω / t .... equation i
But acceleration (a) = velocity (v) / time (t)
a = v / t
t = v / a
Put t = v / a into equation i
α₀ = ω / (v / a)
α₀ = ω * a / v
α * v = ω * a
a = (α * v) / ω
a = (5.6 * 4.48) / 16
a = 1.568m/s²
a = 1.57m/s²
Answer:
Explanation:
Given
Initial Velocity (u)=13 m/s
angle
distance between fence and deer=2.5 m
We consider deer jump similar to projectile motion
equation of trajectory



Thus deer will cross the fence with an difference in its jump and fence
1.5-1.148=0.351 m



so deer rises during when it is over fence
Yes some mixtures can be separated lets say sand and water the sand is insoluble therefore you can separate it using filtration so it really depends on the mixture but yes they can be
Answer:
Coefficient of kinetic friction = 0.146
Explanation:
Given:
Mass of sled (m) = 18 kg
Horizontal force (F) = 30 N
FInal speed (v) = 2 m/s
Distance (s) = 8.5 m
Find:
Coefficient of kinetic friction.
Computation:
Initial speed (u) = 0 m/s
v² - u² = 2as
2(8.5)a = 2² - 0²
a = 0.2352 m/s²
Nweton's law of :
F (net) = ma
30N - μf = 18 (0.2352)
30 - 4.2336 = μ(mg)
25.7664 = μ(18)(9.8)
μ = 0.146
Coefficient of kinetic friction = 0.146