I think it is either D) or E)
But i am going to go with E)
Answer:
c. Solar eclipses would be much more frequent.
Explanation:
The <u>ecliptic plane</u> is the apparent orbit that the sun describes around the earth (although it is the earth that orbits the sun), is the path the sun follows in earth's sky.
A <u>solar eclipse</u> occurs when the moon gets between the earth and the sun, so a shadow is cast on the earth because the light from the sun is blocked.
The reason why solar eclipses are not very frequent is because the moon's orbital plane is not in the same plane as the orbit of the earth around the sun, but rather that it is somewhat inclined with respect to it.
So <u>if both orbits were aligned, the moon would interpose between the sun and the earth more frequently, producing more solar eclipses.</u>
So, if the moon's orbital plane were exacly the same as the ecliptic plane solar eclipses would be more frequent.
the answer is: c.
Answer:
Ep = 117600 J
Explanation:
Data:
- Mass (m) = 600 kg
- Height (h) = 20 m
- Gravity (g) = 9.8 m/s²
- Potential Energy (Ep) = ?
Use formula:
Replace:
- Ep = 600 kg * 9.8 m/s² * 20 m
Multiply operations, and units:
What is the potential energy?
The potential energy is <u>117600 Joules.</u>
To solve this problem, we use the equation:
<span>d = (v^2 - v0^2) /
2a</span>
where,
d = distance of collapse
v0 = initial velocity = 101 km / h = 28.06 m / s
v = final velocity = 0
a = acceleration = - 300 m / s^2
d = (-28.06 m / s)^2 / (2 * - 300 m / s^2)
<span>d = 1.31 m</span>
Answer:
(a) 6650246.305 N/C
(b) 24150268.34 N/C
(c) 6408227.848 N/C
(d) 665024.6305 N/C
Explanation:
Given:
Radius of the ring (r) = 10.0 cm = 0.10 m [1 cm = 0.01 m]
Total charge of the ring (Q) = 75.0 μC =
[1 μC = 10⁻⁶ C]
Electric field on the axis of the ring of radius 'r' at a distance of 'x' from the center of the ring is given as:

Plug in the given values for each point and solve.
(a)
Given:
, 
Electric field is given as:

(b)
Given:
, 
Electric field is given as:

(c)
Given:
, 
Electric field is given as:

(d)
Given:
, 
Electric field is given as: