Answer:
The answer would be 420 m/s
Explanation:
Look in attachment ⬇
I Hope this Helps!!!
In one of the most amazing coincidences in all of science,
the part of the electromagnetic spectrum that's visible to the
human eye is called "visible light".
Visible light is not 'divided' into anything. We mention the names
to seven of the colors in visible light. But all of the thousands of
OTHER colors that we can see are in there too, even though we
don't bother to list their names when we buzz through the rainbow
in the third grade.
Answer:
2/3
Explanation:
In the case shown above, the result 2/3 is directly related to the fact that the speed of the rocket is proportional to the ratio between the mass of the fluid and the mass of the rocket.
In the case shown in the question above, the momentum will happen due to the influence of the fluid that is in the rocket, which is proportional to the mass and speed of the same rocket. If we consider the constant speed, this will result in an increase in the momentum of the fluid. Based on this and considering that rocket and fluid has momentum in opposite directions we can make the following calculation:
Rocket speed = rocket momentum / rocket mass.
As we saw in the question above, the mass of the rocket is three times greater than that of the rocket in the video. For this reason, we can conclude that the calculation should be done with the rocket in its initial state and another calculation with its final state:
Initial state: Speed = rocket momentum / rocket mass.
Final state: Speed = 2 rocket momentum / 3 rocket mass. -------------> 2/3
The net force acting on the object perpendicular to the table is
∑ F[perp] = F[normal] - mg = 0
where mg is the weight of the object. Then
F[normal] = mg = (15 kg) (9.8 m/s²) = 147 N
The maximum magnitude of static friction is then
0.40 F[normal] = 58.8 N
which means the applied 40 N force is not enough to make the object start to move. So the object has zero acceleration and does not move.
Answer:
Option (a), (b) and (c)
Explanation:
The resistance of a conductor depends on the length of the conductor, area of crossection of the conductor and the nature of the conductor.
The formula for the resistance is given by
R = ρ x l / A
Where, ρ is the resistivity of the conductor, l be the length of the conductor and A be the area of crossection of the conductor.
So, It depends on the length, area and the type of material.